14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell death has a vital role in embryonic development and organismal homeostasis. Biochemical, pharmacological, behavioral, and electrophysiological evidences support the idea that dysregulation of cell death programs are involved in neuropathological conditions like epilepsy. The brain is particularly vulnerable to oxidative damage due to higher oxygen consumption and lower endogenous antioxidant defense than other bodily organ. Thus, in this review, we focused on the comprehensive summarization of evidence for redox-associated cell death pathways including apoptosis, autophagy, necroptosis, and pyroptosis in epilepsy and the oxidative stress-related signaling in this process. We specially proposed that the molecular crosstalk of various redox-linked neuronal cell death modalities might occur in seizure onset and/or epileptic conditions according to the published data. Additionally, abundance of polyunsaturated fatty acids in neuronal membrane makes the brain susceptible to lipid peroxidation. This presumption was then formalized in the proposal that ferroptosis, a novel type of lipid reactive oxygen species (ROS)-dependent regulatory cell death, is likely to be a critical mechanism for the emergence of epileptic phenotype. Targeting ferroptosis process or combination treatment with multiple cell death pathway inhibitors may shed new light on the therapy of epilepsy.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found

          Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway

          Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial–mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis.

            Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pro-inflammatory programmed cell death.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                22 May 2019
                2019
                : 13
                : 512
                Affiliations
                [1] 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University , Changsha, China
                [2] 2Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics , Changsha, China
                [3] 3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, China
                [4] 4Center for Translational Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine , Nanning, China
                [5] 5Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University , Shanghai, China
                Author notes

                Edited by: Marianthi Papakosta, Sigilon Therapeutics, Inc., United States

                Reviewed by: Wladyslaw - Lason, Polish Academy of Sciences, Poland; Eva Maria Jimenez-Mateos, Trinity College Dublin, Ireland

                This article was submitted to Neuropharmacology, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.00512
                6541114
                31191222
                191c7a02-3129-4d3d-ae57-6869ec8737f2
                Copyright © 2019 Mao, Zhou and Jin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 January 2019
                : 03 May 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 93, Pages: 11, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                epilepsy,apoptosis,autophagy,necroptosis,pyroptosis,ferroptosis
                Neurosciences
                epilepsy, apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis

                Comments

                Comment on this article