43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multistate Outbreaks of Foodborne Illness in the United States Associated With Fresh Produce From 2010 to 2017

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the United States, the consumption of fresh fruits and vegetables has increased during recent years as consumers seek to make healthier lifestyle choices. However, the number of outbreaks associated with fresh produce that involve cases in more than one state (multistate) has increased concomitantly. As the distance along the farm-to-fork continuum has lengthened over time, there are also more opportunities for fresh produce contamination with bacterial pathogens before it reaches the consumer. This review provides an overview of the three bacterial pathogens (i.e., pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica) associated with multistate fresh produce outbreaks that occurred between 2010 and 2017 in the U.S. Possible routes of fresh produce contamination, including pre- and post-harvest, are summarized and outcomes of selected outbreaks within this timeframe are highlighted. Eighty-five multistate outbreaks linked to fresh produce with a confirmed etiology occurred from 2010 to 2017. Cross-contamination within the distribution chain and poor agricultural practices, along with the production of sprouts and importation of fresh produce were frequently implicated contributors to these events. The evolution of the food supply chain in the U.S. necessitates an examination of multistate outbreaks to shed light on factors that increase the scale of these events.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Diarrheagenic Escherichia coli.

          Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The epidemiology of human listeriosis.

            Listeriosis is a serious invasive disease that primarily afflicts pregnant women, neonates and immunocompromised adults. The causative organism, Listeria monocytogenes, is primarily transmitted to humans through contaminated foods. Outbreaks of listeriosis have been reported in North America, Europe and Japan. Soft cheeses made from raw milk and ready-to-eat meats are high risk foods for susceptible individuals. Efforts by food processors and food regulatory agencies to aggressively control L. monocytogenes in the high risk foods have resulted in significant decreases in the incidence of sporadic listeriosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation.

              Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 November 2019
                2019
                : 10
                : 2667
                Affiliations
                [1] 1Department of Epidemiology, Human Genetics and Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center , Houston, TX, United States
                [2] 2Division of Food Processing Science and Technology, U.S. Food and Drug Administration , Bedford Park, IL, United States
                [3] 3Microbiology and Infectious Diseases Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston, TX, United States
                Author notes

                Edited by: Dario De Medici, National Institute of Health (ISS), Italy

                Reviewed by: Anca Ioana Nicolau, Dunarea de Jos University, Romania; Werner Ruppitsch, Austrian Agency for Health and Food Safety (AGES), Austria

                *Correspondence: Charles Darkoh, Charles.Darkoh@ 123456uth.tmc.edu

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.02667
                6883221
                31824454
                18fa2087-d873-4afc-bb2a-162dbc49f503
                Copyright © 2019 Carstens, Salazar and Darkoh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 August 2019
                : 01 November 2019
                Page count
                Figures: 0, Tables: 4, Equations: 0, References: 137, Pages: 15, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Microbiology
                Review

                Microbiology & Virology
                multistate,foodborne outbreaks,produce,e. coli,l. monocytogenes,s. enterica,diarrheal disease

                Comments

                Comment on this article