9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Individual Zebrafish ( Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          In aquatic ecology research studies commonly employ a tagging technique named visible implant elastomer (VIE). Despite existing widespread guidance on the use of this marking technique on fish, there is still a lack of information regarding efficiency in small fishes, as well as its impact on fish welfare. The current paper highlights important animal welfare issues and introduces a newly improved VIE tagging protocol, presenting information on individual survival rate, tag retention, and use of different elastomer colours, quantified in different populations and age groups of zebrafish. Specifically, we compare a previously used tagging method with a newly improved protocol which places particular emphasis to the Three Rs, helping to refine this scientific procedure. The shared detailed protocol and information will be beneficial to the zebrafish research community and beyond.

          Abstract

          In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs. To improve animal welfare and fish survival, we added the use of an analgesic compound (lidocaine) through the marking procedure, followed by after-treatment with antiseptics (melaleuca, aloe vera, and PVP-I as active ingredients) to improve tissue regeneration and healing. The newly improved protocol has been quantitatively evaluated on different populations and age groups of zebrafish. This study will be useful to the scientific zebrafish community and to the wider field including biologist and aquarists, especially in consideration of animal welfare, where tagging techniques are considered as a potential noxious stimulus for fish.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          The stress response in fish.

          The stress response in teleost fish shows many similarities to that of the terrestrial vertebrates. These concern the principal messengers of the brain-sympathetic-chromaffin cell axis (equivalent of the brain-sympathetic-adrenal medulla axis) and the brain-pituitary-interrenal axis (equivalent of the brain-pituitary-adrenal axis), as well as their functions, involving stimulation of oxygen uptake and transfer, mobilization of energy substrates, reallocation of energy away from growth and reproduction, and mainly suppressive effects on immune functions. There is also growing evidence for intensive interaction between the neuroendocrine system and the immune system in fish. Conspicuous differences, however, are present, and these are primarily related to the aquatic environment of fishes. For example, stressors increase the permeability of the surface epithelia, including the gills, to water and ions, and thus induce systemic hydromineral disturbances. High circulating catecholamine levels as well as structural damage to the gills and perhaps the skin are prime causal factors. This is associated with increased cellular turnover in these organs. In fish, cortisol combines glucocorticoid and mineralocorticoid actions, with the latter being essential for the restoration of hydromineral homeostasis, in concert with hormones such as prolactin (in freshwater) and growth hormone (in seawater). Toxic stressors are part of the stress literature in fish more so than in mammals. This is mainly related to the fact that fish are exposed to aquatic pollutants via the extensive and delicate respiratory surface of the gills and, in seawater, also via drinking. The high bioavailability of many chemicals in water is an additional factor. Together with the variety of highly sensitive perceptive mechanisms in the integument, this may explain why so many pollutants evoke an integrated stress response in fish in addition to their toxic effects at the cell and tissue levels. Exposure to chemicals may also directly compromise the stress response by interfering with specific neuroendocrine control mechanisms. Because hydromineral disturbance is inherent to stress in fish, external factors such as water pH, mineral composition, and ionic calcium levels have a significant impact on stressor intensity. Although the species studied comprise a small and nonrepresentative sample of the almost 20,000 known teleost species, there are many indications that the stress response is variable and flexible in fish, in line with the great diversity of adaptations that enable these animals to live in a large variety of aquatic habitats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

            Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Zebrafish: Housing and husbandry recommendations

              This article provides recommendations for the care of laboratory zebrafish (Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, ‘Terms of Reference’.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                26 February 2021
                March 2021
                : 11
                : 3
                : 616
                Affiliations
                [1 ]Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK; brookeann2015@ 123456outlook.com (B.A.); Toni.Dwyer@ 123456glasgow.ac.uk (T.D.); d.thambithurai.1@ 123456research.gla.ac.uk (D.T.); Amelie.Crespel@ 123456glasgow.ac.uk (A.C.); shaun.killen@ 123456gmail.com (S.S.K.)
                [2 ]Department of Genetics, ELTE Eötvös Loránd University, Pázmány P.s. 1/C, H-1117 Budapest, Hungary
                [3 ]Department of Biology, Natura Building, University of Turku, 20500 Turku, Finland
                Author notes
                Author information
                https://orcid.org/0000-0003-3223-3573
                https://orcid.org/0000-0002-6351-9008
                Article
                animals-11-00616
                10.3390/ani11030616
                7996851
                33652779
                18e18c63-9351-44e6-9b20-c71ba43d480c
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 February 2021
                : 20 February 2021
                Categories
                Article

                vie,tagging,marking,fish,zebrafish,danio rerio,fish welfare,three rs,3rs,analgesia

                Comments

                Comment on this article