30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tyrosine Phosphorylation within the Intrinsically Disordered Cytosolic Domains of the B-Cell Receptor: An NMR-Based Structural Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the B-cell receptor. The cytosolic domains of these proteins are intrinsically disordered and each has an immunoreceptor tyrosine-based activation motif (ITAM). When an antigen binds to the receptor, conserved tyrosines located in the ITAMs are phosphorylated which initiate further downstream signaling. Here we use NMR spectroscopy to examine the secondary structure propensity of the cytosolic domains of CD79a and CD79b in vitro before and after phosphorylation. The phosphorylation patterns are identified through analysis of changes of backbone chemical shifts found for the affected tyrosines and neighboring residues. The number of the phosphorylated sites is confirmed by mass spectrometry. The secondary structure propensities are calculated using the method of intrinsic referencing, where the reference random coil chemical shifts are measured for the same protein under denaturing conditions. Our analysis revealed that CD79a and CD79b both have an overall propensity for α-helical structure that is greatest in the C-terminal region of the ITAM. Phosphorylation of CD79a caused a decrease in helical propensity in the C-terminal ITAM region. For CD79b, the opposite was observed and phosphorylation resulted in an increase of helical propensity in the C-terminal part.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsically disordered proteins: a 10-year recap.

          The suggestion that the native state of many proteins is intrinsically disordered (or, as originally termed, unstructured) is now integral to our general view of protein structure and function. A little more than 10 years ago, however, such challenge to the almost dogmatic 'structure-function paradigm' was pure heresy due to the overwhelming evidence that structure determines function. A decade of steady progress turned skepticism around: this 10-year recap review outlines the situation a decade ago and the major directions of the breathtaking advance achieved by experimental and computational approaches. I show that the evidence for the generality and importance of this phenomenon is now so insurmountable that it demands the inclusion of 'unstructural' biology into mainstream biology and biochemistry textbooks. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Antigen receptor tail clue.

            M. RETH (1989)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein.

              alpha-Synuclein (alpha-syn) phosphorylation at serine 129 is characteristic of Parkinson disease (PD) and related alpha-synulceinopathies. However, whether phosphorylation promotes or inhibits alpha-syn aggregation and neurotoxicity in vivo remains unknown. This understanding is critical for elucidating the role of alpha-syn in the pathogenesis of PD and for development of therapeutic strategies for PD. To better understand the structural and molecular consequences of Ser-129 phosphorylation, we compared the biochemical, structural, and membrane binding properties of wild type alpha-syn to those of the phosphorylation mimics (S129E, S129D) as well as of in vitro phosphorylated alpha-syn using a battery of biophysical techniques. Our results demonstrate that phosphorylation at Ser-129 increases the conformational flexibility of alpha-syn and inhibits its fibrillogenesis in vitro but does not perturb its membrane-bound conformation. In addition, we show that the phosphorylation mimics (S129E/D) do not reproduce the effect of phosphorylation on the structural and aggregation properties of alpha-syn in vitro. Our findings have significant implications for current strategies to elucidate the role of phosphorylation in modulating protein structure and function in health and disease and provide novel insight into the underlying mechanisms that govern alpha-syn aggregation and toxicity in PD and related alpha-synulceinopathies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 April 2014
                : 9
                : 4
                : e96199
                Affiliations
                [1 ]The Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
                [2 ]Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                MRC National Institute for Medical Research, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JR LI MM JL VO. Performed the experiments: JR LI JL MM. Analyzed the data: JR JL MM. Contributed reagents/materials/analysis tools: MM VO. Wrote the paper: JR VO.

                Article
                PONE-D-14-01932
                10.1371/journal.pone.0096199
                4000212
                24769851
                18c85f58-f301-48aa-ad5e-6804cd196fb1
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 January 2014
                : 4 April 2014
                Page count
                Pages: 8
                Funding
                The Swedish Research Council (research grant 2011-5994 and SWEDSTRUCT program); the Swedish National Infrastructure for Computing (SNIC 001/12-271). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Antibodies
                Protein Structure
                Protein Folding
                Biomacromolecule-Ligand Interactions
                Biophysics
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                B Cells
                T Cells
                Immune Cells
                Immunology
                Physical Sciences
                Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content154

                Cited by9

                Most referenced authors1,094