53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lactobacillus gasseri SBT2055 (LG2055) has been shown to prevent abdominal adiposity, and suppression of lipid absorption is considered a possible mechanism, detail of which, however, are poorly understood. In the present study, we evaluated the effects of LG2055 on fat hydrolysis by determining pancreatic lipase activity and fat emulsion properties in vitro. We also examined whether LG2055 influences fecal fat excretion in humans.

          Methods

          Pancreatic lipase activity was investigated in vitro using an artificially prepared fat emulsion and 4-methylumbelliferyl oleate (4-MUO) as substrates. The concentrations of free fatty acids and 4-methylumbelliferone were quantified. Fat emulsion droplet size was measured using a particle size analyzer. The clinical study was performed as a double-blind, randomized, placebo-controlled trial. Subjects consumed 100 g of fermented milk (FM)/d, either with or without LG2055 supplementation, for seven days. Fecal samples were collected during three-day pre-observational and FM intake periods and fecal fat levels were determined.

          Results

          LG2055 dose-dependently suppressed lipase activity in the fat emulsion assay but not in the 4-MUO assay. LG2055 dose-dependently increased fat emulsion droplet size. The effects of LG2055 on lipase activity and fat emulsion properties were increased compared with four other tested strains ( Lactobacillus gasseri SBT0317, Lactobacillus gasseri JCM1131 T, Lactobacillus. delbrueckii subsp. bulgaricus JCM1002 T and Streptococcus thermophilus ATCC19258 T). In our clinical study, fecal fat level after FM intake was significantly increased compared with that observed before FM intake in the LG2055-containing active FM group but not the control FM group lacking LG2055.

          Conclusions

          LG2055 increased fat emulsion droplet size, resulting in the suppression of lipase-mediated fat hydrolysis. The influence of LG2055 on the physicochemical properties of fat emulsion provides a mechanism for the probiotic-mediated suppression of lipid absorption and promotion of fecal fat excretion in humans.

          Trial registration

          UMIN000015772

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial.

          In spite of the much evidence for the beneficial effects of probiotics, their anti-obesity effects have not been well examined. We evaluated the effects of the probiotic Lactobacillus gasseri SBT2055 (LG2055) on abdominal adiposity, body weight and other body measures in adults with obese tendencies. We conducted a multicenter, double-blind, randomized, placebo-controlled intervention trial. Subjects (n=87) with higher body mass index (BMI) (24.2-30.7 kg/m(2)) and abdominal visceral fat area (81.2-178.5 cm(2)) were randomly assigned to receive either fermented milk (FM) containing LG2055 (active FM; n=43) or FM without LG2055 (control FM; n=44), and were asked to consume 200 g/day of FM for 12 weeks. Abdominal fat area was determined by computed tomography. In the active FM group, abdominal visceral and subcutaneous fat areas significantly (P<0.01) decreased from baseline by an average of 4.6% (mean (confidence interval): -5.8 (-10.0, -1.7) cm(2)) and 3.3% (-7.4 (-11.6, -3.1) cm(2)), respectively. Body weight and other measures also decreased significantly (P<0.001) as follows: body weight, 1.4% (-1.1 (-1.5, -0.7) kg); BMI, 1.5% (-0.4 (-0.5, -0.2) kg/m(2)); waist, 1.8% (-1.7 (-2.1, -1.4) cm); hip, 1.5% (-1.5 (-1.8, -1.1) cm). In the control group, by contrast, none of these parameters decreased significantly. High-molecular weight adiponectin in serum increased significantly (P<0.01) in the active and control groups by 12.7% (0.17 (0.07, 0.26) microg/ml) and 13.6% (0.23 (0.07, 0.38) microg/ml), respectively. The probiotic LG2055 showed lowering effects on abdominal adiposity, body weight and other measures, suggesting its beneficial influence on metabolic disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.

            Fifty-four polyphenols isolated from tea leaves were evaluated for their inhibitory activities against pancreatic lipase, the key enzyme of lipid absorption in the gut. (-)-Epigallocatechin 3-O-gallate (EGCG), which is one of major polyphenols in green tea, showed lipase inhibition with an IC50 of 0.349 microM. Moreover, flavan-3-ol digallate esters, such as (-)-epigallocatechin-3,5-digallate, showed higher activities of inhibition on lipase with an IC50 of 0.098 microM. On the other hand, nonesterified flavan-3-ols, such as (+)-catechin, (-)-epicatechin, (+)-gallocatechin, and (-)-epigallocatechin, showed zero and/or the lowest activities against pancreatic lipase (IC50 > 20 microM). These data suggested that the presence of galloyl moieties within the structure was required for enhancement of pancreatic lipase inhibition. It is well-known that flavan-3-ols are polymerized by polyphenol oxidase and/or heating in a manufacturing process of oolong tea. Oolonghomobisflavans A and B and oolongtheanin 3'-O-gallate, which are typical in oolong tea leaves, showed strong inhibitory activities with IC50 values of 0.048, 0.108, and 0.068 microM, respectively, even higher than that of EGCG. The oolong tea polymerized polyphenols (OTPP) were prepared for the assay from oolong tea extract, from which the preparation effectively subtracted the zero and/or less-active monomeric flavan-3-ols by preparative high-performance liquid chromatography. The weight-average molecular weight (Mw) and number-average molecular-weight (Mn) values of OTPP were 2017 and 903, respectively, by using gel permeation choromatography. OTPP showed a 5-fold stronger inhibition against pancreatic lipase (IC50 = 0.28 microg/mL) by comparison with that of the tannase-treated OTPP (IC50 = 1.38 microg/mL). These data suggested that the presence of galloyl moieties within their chemical structures and/or the polymerization of flavan-3-ols were required for enhancement of pancreatic lipase inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract.

              The extent of fat emulsification affects the activity of digestive lipases in vitro and may govern digestion and absorption of dietary fat. We investigated the effect of the fat globule size of 2 enteral emulsions on fat digestion and assimilation in humans. Healthy subjects received intragastrically a coarse (10 microm) and a fine (0.7 microm) lipid emulsion of identical composition in random order. Gastric and duodenal aspirates were collected throughout digestion to measure changes in fat droplet size, gastric and pancreatic lipase activities, and fat digestion. Blood lipids were measured postprandially for fat assimilation. Despite an increase in droplet size in the stomach (2.75-6.20 microm), the fine emulsion retained droplets of smaller size and its lipolysis was greater than that of the coarse emulsion (36.5% compared with 15.8%; P < 0.05). In the duodenum, lipolysis of the fine emulsion was on the whole higher (73.3% compared with 46.3%). The overall 0-7-h plasma and chylomicron responses given by the areas under the curve were not significantly different between the emulsions, but the triacylglycerol peak was delayed with the fine emulsion (3 h 56 min compared with 2 h 50 min). Fat emulsions behave differently in the digestive tract depending on their initial physicochemical properties. A lower initial fat droplet size facilitates fat digestion by gastric lipase in the stomach and duodenal lipolysis. Overall fat assimilation in healthy subjects is not affected by differences in initial droplet size because of efficient fat digestion by pancreatic lipase in the small intestine. Nevertheless, these new observations could be of interest in the enteral nutrition of subjects suffering from pancreatic insufficiency.
                Bookmark

                Author and article information

                Contributors
                akihiro-ogawa@meg-snow.com
                t-kobayashi@meg-snow.com
                f-sakai@meg-snow.com
                y-kadooka@meg-snow.com
                yoshihiro-kawasaki@meg-snow.com
                Journal
                Lipids Health Dis
                Lipids Health Dis
                Lipids in Health and Disease
                BioMed Central (London )
                1476-511X
                20 March 2015
                20 March 2015
                2015
                : 14
                : 20
                Affiliations
                [ ]Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165 Japan
                [ ]Public Relations Department, Megmilk Snow Brand Co. Ltd., 13 Honshiocho, Shinjuku-ku, Tokyo 160-0003 Japan
                Article
                19
                10.1186/s12944-015-0019-0
                4391304
                25884980
                18b65b16-d89b-4fc4-8ee4-307d74549075
                © Ogawa et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 December 2014
                : 5 March 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Biochemistry
                probiotics,lactobacillus gasseri sbt2055,lipid absorption,lipase,fat emulsion,droplet size,fecal fat excretion

                Comments

                Comment on this article