36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer’s Disease

      research-article
      *
      Frontiers in Neuroscience
      Frontiers Media S.A.
      amyloid beta protein, therapy, Alzheimer’s disease (AD), vaccination, hypothesis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beta amyloid, Aβ 1–42, originally named as Amyloid A4 protein, is one of the most investigated peptides in neuroscience and has attracted substantial interest since its discovery as the main insoluble fibril-type protein in cerebrovascular amyloid angiopathy ( Glenner and Wong, 1984; Masters et al., 1985) of Alzheimer’s disease (AD). From the very beginning, Aβ was regarded per se as a “bad molecule,” triggering the so-called “beta amyloid cascade hypothesis” ( Hardy and Higgins, 1992). This hypothesis ignored any physiological function for in situ generated Aβ monomer with normal production and turnover rate ( Bateman et al., 2006). Accordingly, pan-Aβ-related therapeutic approaches were designed to eliminate or lower the three structural isoforms in parallel: (1) the pre-amyloid monomer, (2) the misfolded oligomer, and (3) the final fibril. While we already knew about poor correlations between plaques and cognitive decline quite early ( Terry et al., 1991), data for an essential benign physiological role for Aβ monomer at low concentrations were also not considered to be relevant. Here, a different Beta Amyloid hypothesis is described, the so-called “Beta Amyloid Dysfunction hypothesis,” which, in contrast to the “Beta Amyloid Cascade hypothesis,” builds on the homeostasis of essential Aβ monomer in the synaptic vesicle cycle (SVC). Disease-relevant early pathology emerges through disturbance of the Aβ homeostasis by so far unknown factors leading to the formation of misfolded Aβ oligomers. These early species interfere with the synaptic physiological Aβ monomer regulation and exert their neurotoxicity via various receptors for sticky oligomer-type Aβ aggregates. The Beta Amyloid Dysfunction (BAD) hypothesis is introduced and shown to explain negative clinical results of Gamma-secretase and Beta-secretase (BACE) inhibitors as well as pan-Aβ isotype unselective immunotherapies. This hypothesis gives guidance to what needs to be done therapeutically to revive successful clinical testing in AD for this highly validated target. The BAD hypothesis will need further refinement in particular through more detailed exploration for the role of physiological Aβ monomer.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          APP processing and synaptic function.

          A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.

            Accumulation of the amyloid-beta protein (Abeta) in the cerebral cortex is an early and invariant event in the pathogenesis of Alzheimer's disease. The final step in the generation of Abeta from the beta-amyloid precursor protein is an apparently intramembranous proteolysis by the elusive gamma-secretase(s). The most common cause of familial Alzheimer's disease is mutation of the genes encoding presenilins 1 and 2, which alters gamma-secretase activity to increase the production of the highly amyloidogenic Abeta42 isoform. Moreover, deletion of presenilin-1 in mice greatly reduces gamma-secretase activity, indicating that presenilin-1 mediates most of this proteolytic event. Here we report that mutation of either of two conserved transmembrane (TM) aspartate residues in presenilin-1, Asp 257 (in TM6) and Asp 385 (in TM7), substantially reduces Abeta production and increases the amounts of the carboxy-terminal fragments of beta-amyloid precursor protein that are the substrates of gamma-secretase. We observed these effects in three different cell lines as well as in cell-free microsomes. Either of the Asp --> Ala mutations also prevented the normal endoproteolysis of presenilin-1 in the TM6 --> TM7 cytoplasmic loop. In a functional presenilin-1 variant (carrying a deletion in exon 9) that is associated with familial Alzheimer's disease and which does not require this cleavage, the Asp 385 --> Ala mutation still inhibited gamma-secretase activity. Our results indicate that the two transmembrane aspartate residues are critical for both presenilin-1 endoproteolysis and gamma-secretase activity, and suggest that presenilin 1 is either a unique diaspartyl cofactor for gamma-secretase or is itself gamma-secretase, an autoactivated intramembranous aspartyl protease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR.

              We present a structural model for amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), based on a set of experimental constraints from solid state NMR spectroscopy. The model additionally incorporates the cross-beta structural motif established by x-ray fiber diffraction and satisfies constraints on Abeta(1-40) fibril dimensions and mass-per-length determined from electron microscopy. Approximately the first 10 residues of Abeta(1-40) are structurally disordered in the fibrils. Residues 12-24 and 30-40 adopt beta-strand conformations and form parallel beta-sheets through intermolecular hydrogen bonding. Residues 25-29 contain a bend of the peptide backbone that brings the two beta-sheets in contact through sidechain-sidechain interactions. A single cross-beta unit is then a double-layered beta-sheet structure with a hydrophobic core and one hydrophobic face. The only charged sidechains in the core are those of D23 and K28, which form salt bridges. Fibrils with minimum mass-per-length and diameter consist of two cross-beta units with their hydrophobic faces juxtaposed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                07 November 2019
                2019
                : 13
                : 1154
                Affiliations
                Independent Researcher , Haßloch, Germany
                Author notes

                Edited by: Gunnar Keppler Gouras, Lund University, Sweden

                Reviewed by: Oliver Wirths, University Medical Center Göttingen, Germany; Takami Tomiyama, Osaka City University, Japan

                *Correspondence: Heinz Hillen, hhillens@ 123456icloud.com

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01154
                6853841
                31787864
                18af00d1-1efa-48fe-8d6b-90d52f01e468
                Copyright © 2019 Hillen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2019
                : 14 October 2019
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 81, Pages: 10, Words: 0
                Categories
                Neuroscience
                Hypothesis and Theory

                Neurosciences
                amyloid beta protein,therapy,alzheimer’s disease (ad),vaccination,hypothesis
                Neurosciences
                amyloid beta protein, therapy, alzheimer’s disease (ad), vaccination, hypothesis

                Comments

                Comment on this article