0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoquantification of RUNX2 by a 1,1′-carbonyldiimidazole-diamond mediated sandwich assay for osteogenic differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose tissue-derived stem cells (ADSCs) possess the capability to modulate the immune response and alleviate inflammation, rendering them a promising therapeutic option for various conditions, including autoimmune diseases, cardiovascular diseases, and tissue injuries. The osteogenic differentiation in ADSCs plays a pivotal role in fracture healing, bone growth, and the overall bone turnover process, governed by intricate interactions. Runt-related Transcription Factor 2 (RUNX2) is a key player in mineralized tissue generation and is typically found in the early stages of osteogenic differentiation. The objective of this study was to develop a high-affinity sandwich biosensor for the quantification of RUNX2. 1,1′-Carbonyldiimidazole-modified nanodiamond was immobilized on an amine-modified interdigitated electrode surface, followed by the use of a capture antibody to facilitate antigen interaction. A sandwich assay was conducted with the antibody, and the limit of detection for RUNX2 was calculated as 0.1 ng/mL, with a regression value (R 2) of 0.9914 over a linear range of 1–2000 ng/mL. Furthermore, biofouling experiments with a nonimmune antibody, BSA, and TNF-α did not yield any current responses, indicating the specific detection of RUNX2. Additionally, RUNX2-spiked serum exhibited an increasing current response at all concentrations, confirming the selective detection of RUNX2.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of fracture healing.

          The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates.

            Diamond, because of its electrical and chemical properties, may be a suitable material for integrated sensing and signal processing. But methods to control chemical or biological modifications on diamond surfaces have not been established. Here, we show that nanocrystalline diamond thin-films covalently modified with DNA oligonucleotides provide an extremely stable, highly selective platform in subsequent surface hybridization processes. We used a photochemical modification scheme to chemically modify clean, H-terminated nanocrystalline diamond surfaces grown on silicon substrates, producing a homogeneous layer of amine groups that serve as sites for DNA attachment. After linking DNA to the amine groups, hybridization reactions with fluorescently tagged complementary and non-complementary oligonucleotides showed no detectable non-specific adsorption, with extremely good selectivity between matched and mismatched sequences. Comparison of DNA-modified ultra-nanocrystalline diamond films with other commonly used surfaces for biological modification, such as gold, silicon, glass and glassy carbon, showed that diamond is unique in its ability to achieve very high stability and sensitivity while also being compatible with microelectronics processing technologies. These results suggest that diamond thin-films may be a nearly ideal substrate for integration of microelectronics with biological modification and sensing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of osteogenic differentiation during skeletal development.

              Bone formation during skeletal development involves a complex coordination among multiple cell types and tissues. Bone is of crucial importance for the human body, providing skeletal support, and serving as a home for the formation of hematopoietic cells and as a reservoir for calcium and phosphate. Bone is also continuously remodeled in vertebrates throughout life. Osteoblasts and osteoclasts are specialized cells responsible for bone formation and resorption, respectively. Early development of the vertebrate skeleton depends on genes that control the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations, where cells differentiate to osteoblasts. Significant progress has been made over the past decade in our understanding of the molecular framework that controls osteogenic differentiation. A large number of morphogens, signaling molecules, and transcriptional regulators have been implicated in regulating bone development. A partial list of these factors includes the Wnt/beta-catenin, TGF-beta/BMP, FGF, Notch and Hedgehog signaling pathways, and Runx2, Osterix, ATF4, TAZ, and NFATc1 transcriptional factors. A better understanding of molecular mechanisms behind osteogenic differentiation would not only help us to identify pathogenic causes of bone and skeletal diseases but also lead to the development of targeted therapies for these diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                23 May 2024
                15 June 2024
                23 May 2024
                : 10
                : 11
                : e31837
                Affiliations
                [a ]Department of Bone Surgery, The Third Hospital of Shandong Province, Jinan, Shandong, 250031, China
                [b ]Department of Orthopaedics, Changshu Zhitang People's Hospital, Changshu, Jiangsu, 215531, China
                [c ]Department of Second Orthopedics (Department of Joint Surgery), The Xingyuan Hospital of Yulin (The fourth of Yulin Hospital), Yulin, Shaanxi, 719000, China
                Author notes
                [* ]Corresponding author. yzq13689224943@ 123456sina.com
                [1]

                Equally contributed.

                Article
                S2405-8440(24)07868-X e31837
                10.1016/j.heliyon.2024.e31837
                11167296
                38868000
                18aa1ead-ab98-40b2-8f55-c0f76020ba9d
                © 2024 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 4 December 2023
                : 29 March 2024
                : 22 May 2024
                Categories
                Research Article

                runt-related transcription factor,nanodiamond,sandwich pattern,antibody orientation

                Comments

                Comment on this article