3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phase 3 Trial of Selpercatinib in Advanced RET-Mutant Medullary Thyroid Cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial.

            There is no effective therapy for patients with advanced medullary thyroid carcinoma (MTC). Vandetanib, a once-daily oral inhibitor of RET kinase, vascular endothelial growth factor receptor, and epidermal growth factor receptor signaling, has previously shown antitumor activity in a phase II study of patients with advanced hereditary MTC. Patients with advanced MTC were randomly assigned in a 2:1 ratio to receive vandetanib 300 mg/d or placebo. On objective disease progression, patients could elect to receive open-label vandetanib. The primary end point was progression-free survival (PFS), determined by independent central Response Evaluation Criteria in Solid Tumors (RECIST) assessments. Between December 2006 and November 2007, 331 patients (mean age, 52 years; 90% sporadic; 95% metastatic) were randomly assigned to receive vandetanib (231) or placebo (100). At data cutoff (July 2009; median follow-up, 24 months), 37% of patients had progressed and 15% had died. The study met its primary objective of PFS prolongation with vandetanib versus placebo (hazard ratio [HR], 0.46; 95% CI, 0.31 to 0.69; P < .001). Statistically significant advantages for vandetanib were also seen for objective response rate (P < .001), disease control rate (P = .001), and biochemical response (P < .001). Overall survival data were immature at data cutoff (HR, 0.89; 95% CI, 0.48 to 1.65). A final survival analysis will take place when 50% of the patients have died. Common adverse events (any grade) occurred more frequently with vandetanib compared with placebo, including diarrhea (56% v 26%), rash (45% v 11%), nausea (33% v 16%), hypertension (32% v 5%), and headache (26% v 9%). Vandetanib demonstrated therapeutic efficacy in a phase III trial of patients with advanced MTC (ClinicalTrials.gov NCT00410761).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cabozantinib in progressive medullary thyroid cancer.

              Cabozantinib, a tyrosine kinase inhibitor (TKI) of hepatocyte growth factor receptor (MET), vascular endothelial growth factor receptor 2, and rearranged during transfection (RET), demonstrated clinical activity in patients with medullary thyroid cancer (MTC) in phase I. We conducted a double-blind, phase III trial comparing cabozantinib with placebo in 330 patients with documented radiographic progression of metastatic MTC. Patients were randomly assigned (2:1) to cabozantinib (140 mg per day) or placebo. The primary end point was progression-free survival (PFS). Additional outcome measures included tumor response rate, overall survival, and safety. The estimated median PFS was 11.2 months for cabozantinib versus 4.0 months for placebo (hazard ratio, 0.28; 95% CI, 0.19 to 0.40; P < .001). Prolonged PFS with cabozantinib was observed across all subgroups including by age, prior TKI treatment, and RET mutation status (hereditary or sporadic). Response rate was 28% for cabozantinib and 0% for placebo; responses were seen regardless of RET mutation status. Kaplan-Meier estimates of patients alive and progression-free at 1 year are 47.3% for cabozantinib and 7.2% for placebo. Common cabozantinib-associated adverse events included diarrhea, palmar-plantar erythrodysesthesia, decreased weight and appetite, nausea, and fatigue and resulted in dose reductions in 79% and holds in 65% of patients. Adverse events led to treatment discontinuation in 16% of cabozantinib-treated patients and in 8% of placebo-treated patients. Cabozantinib (140 mg per day) achieved a statistically significant improvement of PFS in patients with progressive metastatic MTC and represents an important new treatment option for patients with this rare disease. This dose of cabozantinib was associated with significant but manageable toxicity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                October 21 2023
                Affiliations
                [1 ]From the Service d’oncologie endocrinienne, département d’imagerie, Gustave Roussy and ENDOCAN-TUTHYREF Network, Villejuif (J.H.), and the Nuclear Medicine Department and Thyroid Unit, Centre François Baclesse, Caen (S.B.) — both in France; the Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (R.E.); the Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia (M.S.B.); the Department of Endocrinology,...
                Article
                10.1056/NEJMoa2309719
                37870969
                189d23b6-a576-4a5f-8235-d40bd77da935
                © 2023

                http://www.nejmgroup.org/legal/terms-of-use.htm

                History

                Comments

                Comment on this article