8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Principles and mechanisms of non-genetic resistance in cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As well as undergoing genetic evolution, cancer cells can alter their epigenetic state to adapt and resist treatment. This non-genetic evolution is emerging as a major component of cancer resistance. Only now are we beginning to acquire the necessary data and tools to establish some of the underlying principles and mechanisms that define when, why and how non-genetic resistance occurs. Preliminary studies suggest that it can exist in a number of forms, including drug persistence, unstable non-genetic resistance and, most intriguingly, stable non-genetic resistance. Exactly how they each arise remains unclear; however, epigenetic heterogeneity and plasticity appear to be important variables. In this review, we provide an overview of these different forms of non-genetic resistance, before exploring how epigenetic heterogeneity and plasticity influence their emergence. We highlight the distinction between non-genetic Darwinian selection and Lamarckian induction and discuss how each is capable of generating resistance. Finally, we discuss the potential interaction between genetic and non-genetic adaptation and propose the idea of ‘the path of most resistance’, which outlines the variables that dictate whether cancers adapt through genetic and/or epigenetic means. Through these discussions, we hope to provide a conceptual framework that focuses future studies, whose insights might help prevent or overcome non-genetic resistance.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Nature, nurture, or chance: stochastic gene expression and its consequences.

          Gene expression is a fundamentally stochastic process, with randomness in transcription and translation leading to cell-to-cell variations in mRNA and protein levels. This variation appears in organisms ranging from microbes to metazoans, and its characteristics depend both on the biophysical parameters governing gene expression and on gene network structure. Stochastic gene expression has important consequences for cellular function, being beneficial in some contexts and harmful in others. These situations include the stress response, metabolism, development, the cell cycle, circadian rhythms, and aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The clonal evolution of tumor cell populations.

            P C Nowell (1976)
            It is proposed that most neoplasms arise from a single cell of origin, and tumor progression results from acquired genetic variability within the original clone allowing sequential selection of more aggressive sublines. Tumor cell populations are apparently more genetically unstable than normal cells, perhaps from activation of specific gene loci in the neoplasm, continued presence of carcinogen, or even nutritional deficiencies within the tumor. The acquired genetic insta0ility and associated selection process, most readily recognized cytogenetically, results in advanced human malignancies being highly individual karyotypically and biologically. Hence, each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment. More research should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer drug resistance: an evolving paradigm.

              Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.
                Bookmark

                Author and article information

                Contributors
                +61385595813 , charles.bell@petermac.org
                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group UK (London )
                0007-0920
                1532-1827
                13 December 2019
                18 February 2020
                : 122
                : 4
                : 465-472
                Affiliations
                [1 ]ISNI 0000000403978434, GRID grid.1055.1, Cancer Research Division, Peter MacCallum Cancer Centre, ; Melbourne, VIC Australia
                [2 ]ISNI 0000 0001 2179 088X, GRID grid.1008.9, Sir Peter MacCallum Department of Oncology, , University of Melbourne, ; Melbourne, VIC Australia
                Author information
                http://orcid.org/0000-0003-2194-8311
                Article
                648
                10.1038/s41416-019-0648-6
                7028722
                31831859
                185bcf4a-ca2c-4de8-8566-8c7846e40cdf
                © The Author(s), under exclusive licence to Cancer Research UK 2019

                Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

                History
                : 29 June 2019
                : 31 October 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000925, Department of Health | National Health and Medical Research Council (NHMRC);
                Award ID: APP1146192
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © Cancer Research UK 2020

                Oncology & Radiotherapy
                cancer epigenetics,epigenetics,cancer therapeutic resistance
                Oncology & Radiotherapy
                cancer epigenetics, epigenetics, cancer therapeutic resistance

                Comments

                Comment on this article