0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DFT Study on the Electronic Properties, Spectroscopic Profile, and Biological Activity of 2-Amino-5-trifluoromethyl-1,3,4-thiadiazole with Anticancer Properties

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extensive investigation on the molecular and electronic structure of 2-amino-5-trifluoromethyl-1,3,4-thiadiazole in the ground state and in the first excited state has been performed. The energy barrier corresponding to the conversion between imino and amino tautomers has been calculated, which indicates the existence of amino tautomer in solid state for the title compound. The FT–Raman and FT-IR spectra were recorded and compared with theoretical vibrational wavenumbers, and a good coherence has been observed. The MESP map, dipole moment, polarizability, and hyperpolarizability have been calculated to comprehend the properties of the title molecule. High polarizability value estimation of the title compound may enhance its bioactivity. Natural bonding orbital analysis has been done on monomer and dimer to investigate the charge delocalization and strength of hydrogen bonding, respectively. Strong hydrogen bonding interaction energies of 17.09/17.49 kcal mol –1 have been calculated at the B3LYP/M06-2X functional. The UV–vis spectrum was recorded and related to the theoretical spectrum. The title compound was biologically examined for anticancer activity by studying the cytotoxic performance against two human cancer cell lines (A549 and HeLa) along with the molecular docking simulation. Both molecular docking and cytotoxic performance against cancer cell lines show positive outcomes, and the title compound appears to be a promising anticancer agent.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          UCSF Chimera--a visualization system for exploratory research and analysis.

          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

            AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                13 November 2020
                24 November 2020
                : 5
                : 46
                : 30073-30087
                Affiliations
                []Department of Physics, University of Lucknow , Lucknow 226007, India
                []Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671, Saudi Arabia
                [§ ]Department of Physics, M. M. M. P. G. College , Bhatpar Rani, Deoria 274702, India
                []Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow , Lucknow 226007, India
                []Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura , Mansoura 35516, Egypt
                Author notes
                Article
                10.1021/acsomega.0c04474
                7689922
                33251442
                1826a34b-8036-4bae-a2bd-79f1572940bc
                © 2020 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 12 September 2020
                : 03 November 2020
                Categories
                Article
                Custom metadata
                ao0c04474
                ao0c04474

                Comments

                Comment on this article