2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans.

          Methods

          PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review.

          Results

          Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements.

          Conclusion

          Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.

          Malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and the F2-isoprostane 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) are the best investigated products of lipid peroxidation. MDA, HNE and 15(S)-8-iso-PGF2α are produced from polyunsaturated fatty acids (PUFAs) both by chemical reactions and by reactions catalyzed by enzymes. 15(S)-8-iso-PGF2α and other F2-isoprostanes are derived exclusively from arachidonic acid (AA). The number of PUFAs that may contribute to MDA and HNE is much higher. MDA is the prototype of the so called thiobarbituric acid reactive substances (TBARS). MDA, HNE and 15(S)-8-iso-PGF2α are the most frequently measured biomarkers of oxidative stress, namely of lipid peroxidation. In many diseases, higher concentrations of MDA, HNE and 15(S)-8-iso-PGF2α are measured in biological samples as compared to health. Therefore, elevated oxidative stress is generally regarded as a pathological condition. Decreasing the concentration of biomarkers of oxidative stress by changing life style, by nutritional intake of antioxidants or by means of drugs is generally believed to be beneficial to health. Reliable assessment of oxidative stress by measuring MDA, HNE and 15(S)-8-iso-PGF2α in biological fluids is highly challenging for two important reasons: Because of the duality of oxidative stress, i.e., its origin from chemical and enzymatic reactions, and because of pre-analytical and analytical issues. This article focuses on these key issues. It reviews reported analytical methods and their principles for the quantitative measurement of MDA, HNE and 15(S)-8-iso-PGF2α in biological samples including plasma and urine, and critically discusses their biological and biomedical outcome which is rarely crystal clear and free of artefacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Decoding cell death signals in liver inflammation.

            Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore.

                Bookmark

                Author and article information

                Contributors
                karol.jedrejko@gmail.com
                Journal
                Eur J Clin Pharmacol
                Eur J Clin Pharmacol
                European Journal of Clinical Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0031-6970
                1432-1041
                7 December 2023
                7 December 2023
                2024
                : 80
                : 2
                : 185-202
                Affiliations
                [1 ]Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, ( https://ror.org/03tth1e03) 60-637 Poznan, Poland
                [2 ]Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, ( https://ror.org/03bqmcz70) Medyczna 9 Street, 30-688 Kraków, Poland
                [3 ]Human Performance Laboratory, School of Physical Education, Autonomous University of Nuevo Leon, ( https://ror.org/01fh86n78) San Nicolas de los Garza, Mexico
                [4 ]Department of Research and Graduate Studies in Food Sciences, School of Chemistry, Autonomous University of Queretaro, ( https://ror.org/00v8fdc16) Santiago de Queretaro, Mexico
                [5 ]Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, ( https://ror.org/04p2y4s44) Warsaw, Poland
                Article
                3592
                10.1007/s00228-023-03592-3
                10847181
                38059982
                18112667-a9f5-4815-85ee-5d29930a8ef3
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 August 2023
                : 2 November 2023
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2024

                Pharmacology & Pharmaceutical medicine
                selective androgen receptor modulators,unauthorized ingredients,unapproved pharmaceuticals,dietary supplements,safety,adverse events,liver injury

                Comments

                Comment on this article