Some marine diatoms negatively affect the reproduction of dominant zooplankton grazers such as copepods, thus compromising the transfer of energy through the marine food chains. In this paper, the metabolic mechanism that leads to diatom-induced toxicity is investigated in three bloom-forming microalgae. We show that copepod dysfunctions can be induced by highly reactive oxygen species (hROS) and a blended mixture of diatom products, including fatty acid hydroperoxides (FAHs); these compounds display teratogenic and proapoptotic properties. The process is triggered by the early onset of lipoxygenase activities that elicit the synthesis of species-specific products, the basic structures of which were established (1-20); these compounds boost oxidative stress by massive lipid peroxidation. Our study might explain past laboratory and field results showing how diatoms damage zooplankton grazers even in the absence of polyunsaturated aldehydes, a class of molecules that has been formerly implicated in mediating the toxic activity of diatoms on copepods.