11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Longitudinal Investigation of the Native Grass Hay from Storage to Market Reveals Mycotoxin-Associated Fungi

      , , , ,
      Microorganisms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to characterize the fungal diversity and mycotoxin concentrations of native grass hay in various storage periods. In the present study, the native grass hay samples were collected when stored for 0 d (D0 group), 30 d (D30 group), and 150 d (D150 group), respectively. Here, mycotoxin analyses combined with ITS gene sequence were performed to reveal the changes in response to the storage period. There were notable differences in deoxynivalenol and aflatoxin B1 concentrations among the three groups. Compared to the D150 group, the diversity of the fungal community was higher in the D0 and D30 groups, which indicating the diversity was significantly influenced by the storage period. No significant (p > 0.05) difference was observed among the three groups on the dominant phyla. Interestingly, a significant (p < 0.05) difference was also observed in Chactomella and Aspergillus among the three groups, the abundance of the Chactomella was significantly (p < 0.05) decreased and the abundance of Aspergillus was statistically (p < 0.05) increased in the D150 group. Correlation analysis of the association of fungi with mycotoxin could provide a comprehensive understanding of the structure and function of the fungal community. These results indicated that the good practices of storage are essential for the prevention of mycotoxin. The information contained in the present study is vital for the further development of strategies for hay storage with high quality in the harsh Mongolian Plateau ecosystem.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Alternaria spp.: from general saprophyte to specific parasite.

          SUMMARY Alternaria species are mainly saprophytic fungi. However, some species have acquired pathogenic capacities collectively causing disease over a broad host range. This review summarizes the knowledge on pathogenic strategies employed by the fungus to plunder the host. Furthermore, strategies employed by potential host plants in order to ward off an attack are discussed. Alternaria spp. kingdom Fungi, subkingdom Eumycotera, phylum Fungi Imperfecti (a non-phylogenetic or artificial phylum of fungi without known sexual stages whose members may or may not be related; taxonomy does not reflect relationships), form class Hypomycetes, Form order Moniliales, form family Dematiaceae, genus Alternaria. Some species of Alternaria are the asexual anamorph of the ascomycete Pleospora while others are speculated to be anamorphs of Leptosphaeria. Most Alternaria species are common saprophytes that derive energy as a result of cellulytic activity and are found in a variety of habitats as ubiquitous agents of decay. Some species are plant pathogens that cause a range of economically important diseases like stem cancer, leaf blight or leaf spot on a large variety of crops. Latent infections can occur and result in post-harvest diseases or damping-off in case of infected seed. Useful Website:
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects

            Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Scientific Opinion on the risks for animal and public health related to the presence ofAlternariatoxins in feed and food

              (2011)
                Bookmark

                Author and article information

                Contributors
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                June 2022
                June 02 2022
                : 10
                : 6
                : 1154
                Article
                10.3390/microorganisms10061154
                35744671
                17b45a32-3146-429e-9d90-7f3f328726da
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content145

                Cited by2

                Most referenced authors277