3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canagliflozin Attenuates Lipotoxicity in Cardiomyocytes by Inhibiting Inflammation and Ferroptosis through Activating AMPK Pathway

      , , , , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic cardiomyopathy (DCM) is a myocardial disease independent of other cardiovascular diseases, such as coronary heart disease, hypertension, etc. Lipotoxicity is closely related to DCM. In this study, we investigated the mechanism of lipid metabolism disturbance in DCM in HL-1 cells. Through bioinformatics and Western blotting analysis, we found that canagliflozin (CAN) significantly inhibited the expression of inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Ferroptosis is mediated by lipid peroxidation. We demonstrated the presence of ferroptosis in cardiomyocytes by detecting intracellular Fe2+ content and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), and mitochondrial membrane potential (MMP). CAN could significantly regulate the indicators of ferroptosis. By using specific inhibitors celecoxib (coxib), S-methylisothiourea sulfate (SMT), Ferrostatin-1 (Fer-1), and Compound C, we further found that CAN regulated inflammation and ferroptosis through AMP-activated protein (AMPK), and inflammation interacted with ferroptosis. Our study indicated that CAN attenuated lipotoxicity in cardiomyocytes by regulating inflammation and ferroptosis through activating the AMPK pathway. This study provides a new direction of myocardial lipotoxicity and some new information for the treatment of DCM.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: Death by Lipid Peroxidation.

          Ferroptosis is a regulated form of cell death driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides. This form of iron-dependent cell death is genetically, biochemically, and morphologically distinct from other cell death modalities, including apoptosis, unregulated necrosis, and necroptosis. Ferroptosis is regulated by specific pathways and is involved in diverse biological contexts. Here we summarize the discovery of ferroptosis, the mechanism of ferroptosis regulation, and its increasingly appreciated relevance to both normal and pathological physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ferroptosis as a target for protection against cardiomyopathy

            Significance Nonapoptotic cell death-induced tissue damage has been implicated in a variety of diseases, including neurodegenerative disorder, inflammation, and stroke. In this study, we demonstrate that ferroptosis, a newly defined iron-dependent cell death, mediates both chemotherapy- and ischemia/reperfusion-induced cardiomyopathy. RNA-sequencing analysis revealed up-regulation of heme oxygenase 1 by doxorubicin as a major mechanism of ferroptotic cardiomyopathy. As a result, heme oxygenase 1 degrades heme and releases free iron in cardiomyocytes, which in turn leads to generation of oxidized lipids in the mitochondria membrane. Most importantly, both iron chelation therapy and pharmacologically blocking ferroptosis could significantly alleviate cardiomyopathy in mice. These findings suggest targeting ferroptosis as a strategy for treating deadly heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Mitochondria in Ferroptosis

              Ferroptosis is a regulated necrosis process driven by iron-dependent lipid peroxidation. Although ferroptosis and cellular metabolism interplay with each other, whether mitochondria are involved in ferroptosis is under debate. Here we demonstrate that mitochondria play a crucial role in cysteine deprivation-induced ferroptosis but not in that induced by inhibiting glutathione peroxidase-4 (GPX4), the most downstream component of the ferroptosis pathway. Mechanistically, cysteine deprivation leads to mitochondrial membrane potential hyperpolarization and lipid peroxide accumulation. Inhibition of mitochondrial TCA cycle or electron transfer chain (ETC) mitigated mitochondrial membrane potential hyperpolarization, lipid peroxide accumulation, and ferroptosis. Blockage of glutaminolysis had the same inhibitory effect, which was counteracted by supplying downstream TCA cycle intermediates. Importantly, loss of function of fumarate hydratase, a tumor suppressor and TCA cycle component, confers resistance to cysteine deprivation-induced ferroptosis. Collectively, this work demonstrates the crucial role of mitochondria in cysteine deprivation-induced ferroptosis and implicates ferroptosis in tumor suppression. Gao et al show that mitochondria play a crucial and proactive role in cysteine deprivation-induced ferroptosis but not in GPX4 inhibition-induced ferroptosis. Mechanistically, the mitochondrial TCA cycle and electron transport chain promote cysteine deprivation-induced ferroptosis by serving as the major source for cellular lipid peroxide production. The anaplerotic role of glutaminolysis in replenishing the TCA cycle intermediates explains its involvement in cysteine deprivation-induced ferroptosis. Importantly, mitochondria-mediated ferroptosis might contribute to the antitumor function of fumarate hydratase, a component of the TCA cycle and a tumor suppressor in renal cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                January 2023
                January 03 2023
                : 24
                : 1
                : 858
                Article
                10.3390/ijms24010858
                9821072
                36614295
                1776ca58-09b3-4d44-95bf-0b181f910211
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article