37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.

          Methodology/Principal Findings

          By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves.

          Conclusions

          Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.

          TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

            Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.

              Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                14 August 2012
                : 7
                : 8
                : e42454
                Affiliations
                [1 ]Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
                [2 ]Pharmacology Department, Chiesi Farmaceutici SpA, Parma, Italy
                [3 ]Department of Biochemistry and Molecular Biology, University of Parma, Italy
                [4 ]Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
                [5 ]AstraZeneca Research & Development Innovative Medicines Respiratory & Inflammation, Mölndal, Sweden
                [6 ]Truly Translational Sweden AB, Lund, Sweden
                [7 ]Disease Pharmacology LEO Pharma A/S, Ballerup, Denmark
                [8 ]Department of Biology, University of Copenhagen, Copenhagen, Denmark
                [9 ]Headache Center, University of Florence, Florence, Italy
                Cinvestav-IPN, Mexico
                Author notes

                Competing Interests: CB, NS and ABD at the time when the study was performed were employees of AstraZeneca. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. Currently, CB and NS are employees at Truly Translational Sweden AB, and LEO Pharma A/S, respectively, while ABD is an employee of the University of Copenhagen. PP, NM, CC, FF, ARP, RP are currently employees at Chiesi Farmaceutici SpA. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. The other authors have declared that no competing interests exist.

                Conceived and designed the experiments: RN RP ABD PG SM. Performed the experiments: RN PP NM CF ARV ARP SS CB NS SM. Analyzed the data: RN PP NM CC CB SM. Contributed reagents/materials/analysis tools: CC ARV SS. Wrote the paper: RN FF LMG RP ABD PG SM.

                Article
                PONE-D-12-10523
                10.1371/journal.pone.0042454
                3419223
                22905134
                177226b6-f807-4dad-99d3-3d0d725ae67c
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 April 2012
                : 6 July 2012
                Page count
                Pages: 12
                Funding
                This work was supported by grants from Regione Toscana: “Regional Health Research Program 2009” and “FABER – POR CREO, FESR 2007-2013 1.1.C.” and the Italian Institute of Technology, “Project SEED”, and Ente Cassa di Risparmio di Firenze. The work was also funded by AstraZenca; this does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Respiratory System
                Biochemistry
                Proteins
                Ion Channels
                Immunology
                Immunity
                Inflammation
                Neuroscience
                Cellular Neuroscience
                Ion Channels
                Medicine
                Pulmonology
                Asthma
                Chronic Obstructive Pulmonary Diseases
                Environmental and Occupational Lung Diseases
                Smoking Related Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article