0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Issues and challenges facing rechargeable lithium batteries.

          Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance lithium battery anodes using silicon nanowires.

            There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Challenges for Rechargeable Li Batteries†

                Bookmark

                Author and article information

                Journal
                Nano Research
                Nano Res.
                Springer Science and Business Media LLC
                1998-0124
                1998-0000
                March 2018
                February 2 2018
                March 2018
                : 11
                : 3
                : 1437-1446
                Article
                10.1007/s12274-017-1759-0
                176a00b7-7d9b-4977-8c78-aa523d245232
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article