14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pro-invasive stimuli and the interacting protein Hsp70 favour the route of alpha-enolase to the cell surface

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell surface expression of alpha-enolase, a glycolytic enzyme displaying moonlighting activities, has been shown to contribute to the motility and invasiveness of cancer cells through the protein non-enzymatic function of binding plasminogen and enhancing plasmin formation. Although a few recent records indicate the involvement of protein partners in the localization of alpha-enolase to the plasma membrane, the cellular mechanisms underlying surface exposure remain largely elusive. Searching for novel interactors and signalling pathways, we used low-metastatic breast cancer cells, a doxorubicin-resistant counterpart and a non-tumourigenic mammary epithelial cell line. Here, we demonstrate by a combination of experimental approaches that epidermal growth factor (EGF) exposure, like lipopolysaccharide (LPS) exposure, promotes the surface expression of alpha-enolase. We also establish Heat shock protein 70 (Hsp70), a multifunctional chaperone distributed in intracellular, plasma membrane and extracellular compartments, as a novel alpha-enolase interactor and demonstrate a functional involvement of Hsp70 in the surface localization of alpha-enolase. Our results contribute to shedding light on the control of surface expression of alpha-enolase in non-tumourigenic and cancer cells and suggest novel targets to counteract the metastatic potential of tumours.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          ExoCarta: A Web-Based Compendium of Exosomal Cargo.

          Exosomes are membranous vesicles that are released by a variety of cells into the extracellular microenvironment and are implicated in intercellular communication. As exosomes contain RNA, proteins and lipids, there is a significant interest in characterizing the molecular cargo of exosomes. Here, we describe ExoCarta (http://www.exocarta.org), a manually curated Web-based compendium of exosomal proteins, RNAs and lipids. Since its inception, the database has been highly accessed (>54,000 visitors from 135 countries). The current version of ExoCarta hosts 41,860 proteins, >7540 RNA and 1116 lipid molecules from more than 286 exosomal studies annotated with International Society for Extracellular Vesicles minimal experimental requirements for definition of extracellular vesicles. Besides, ExoCarta features dynamic protein-protein interaction networks and biological pathways of exosomal proteins. Users can download most often identified exosomal proteins based on the number of studies. The downloaded files can further be imported directly into FunRich (http://www.funrich.org) tool for additional functional enrichment and interaction network analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Moonlighting proteins: an intriguing mode of multitasking.

            Proteins are macromolecules, which perform a large variety of functions. Most of them have only a single function, but an increasing number of proteins are being identified as multifunctional. Moonlighting proteins form a special class of multifunctional proteins. They perform multiple autonomous and often unrelated functions without partitioning these functions into different domains of the protein. Striking examples are enzymes, which in addition to their catalytic function are involved in fully unrelated processes such as autophagy, protein transport or DNA maintenance. In this contribution we present an overview of our current knowledge of moonlighting proteins and discuss the significant implications for biomedical and fundamental research. 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages.

              Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal. In this study, we have shown that Hsp70 integrates into artificial lipid bilayer openings of ion conductance pathways. In addition, this protein was found inserted into the plasma membrane of cells after stress. Hsp70 was released into the extracellular environment in a membrane-associated form, sharing the characteristics of this protein in the plasma membrane. Extracellular membranes containing Hsp70 were at least 260-fold more effective than free recombinant protein in inducing TNF-alpha production as an indicator of macrophage activation. These observations suggest that Hsp70 translocates into the plasma membrane after stress and is released within membranous structures from intact cells, which could act as a danger signal to activate the immune system.
                Bookmark

                Author and article information

                Contributors
                agata.giallongo@ibim.cnr.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 June 2017
                19 June 2017
                2017
                : 7
                : 3841
                Affiliations
                [1 ]ISNI 0000 0001 1940 4177, GRID grid.5326.2, Institute of Biomedicine and Molecular Immunology “A. Monroy” (IBIM), , National Research Council (CNR), ; Palermo, Italy
                [2 ]ISNI 0000 0004 1762 5517, GRID grid.10776.37, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), , University of Palermo, ; Palermo, Italy
                Article
                4185
                10.1038/s41598-017-04185-8
                5476664
                28630480
                17356777-7b61-46a9-a467-190b1e842b43
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 October 2016
                : 10 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article