2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene duplication plays an important role in plants for diversification and adaptation to new habitats. In this study, we aim to reconstruct the genome‐scale phylogeny and identify large‐scale gene duplication events for the subtribe Gentianinae (Gentianaceae), which is a great symbol of the alpine plants in the Qinghai–Tibet Plateau. We sequenced and assembled 70 transcriptomes from 67 species, representing all six recognized genera in the subtribe Gentianinae plus the closely related outgroups. Using phylogenomic approaches, the backbone relationships of Gentianinae were almost fully resolved with high bootstrap support. Although instances of conflicts were observed between nuclear and plastid phylogenies, six major clades of Gentianinae were consistently recovered in both phylogenies. In addition, we revealed a high occurrence of duplicated genes in our transcriptome assemblies. Using several gene tree reconciliation methods, we collectively identified 10 nodes in the species tree with large concentrations of duplicated genes. Further analysis indicated that many of these duplicated genes likely arose from hybrid polyploidy, which might also account for some of the topological incongruences between nuclear and plastid phylogenies in Gentianinae.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

              We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Systematics and Evolution
                J of Sytematics Evolution
                Wiley
                1674-4918
                1759-6831
                November 2021
                July 27 2020
                November 2021
                : 59
                : 6
                : 1198-1208
                Affiliations
                [1 ] Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education and State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Sciences Sichuan University Chengdu 610065 China
                [2 ] State Key Laboratory of Grassland Agro‐Ecosystems, College of Life Sciences Lanzhou University Lanzhou 730000 China
                Article
                10.1111/jse.12651
                17196c09-0482-4b5f-9e94-4c37bb97f0be
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article