19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Neuropsychiatric Disease and Treatment (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on all aspects of neuropsychiatric and neurological disorders. Sign up for email alerts here.

      63,741 Monthly downloads/views I 2.989 Impact Factor I 4.5 CiteScore I 1.09 Source Normalized Impact per Paper (SNIP) I 0.744 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do eyes with and without optic neuritis in multiple sclerosis age equally?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Anterior visual pathway reflects axonal loss caused by both optic neuritis (ON) and neurodegeneration in multiple sclerosis (MS). Although the axonal injury post-ON is thought to be complete by 6 months of onset, most studies using optical coherence tomography (OCT) to evaluate retinal changes as a marker of neurodegeneration exclude eyes with a history of ON or consider them separately. The objective of this study was to assess whether the eyes post-ON (>6 months) show in later years different rate of chronic retinal changes than the fellow eyes not affected by ON.

          Patients and methods

          Fifty-six patients with MS with a history of ON in one eye (ON eyes) and no ON in the fellow (FL) eye, who were followed by OCT for >2 years, were selected from a cohort of patients with MS. Paired eye analysis was performed.

          Results

          Mean interval post-ON at baseline was 5.65 (SD 5.05) years. Mean length of follow-up by OCT was 4.57 years. There was no statistical difference in absolute or relative thinning of retinal nerve fiber layer in peripapillary area between the ON and FL eyes.

          Conclusion

          This study has shown that we do not need to exclude eyes with a history of ON from longitudinal studies of neurodegeneration in MS, provided that we use data outside of the frame of acute changes post-ON. Long-term changes of peripapillary retinal nerve fiber layer in ON and FL eyes are equal.

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis.

          To determine the relationships between conventional and segmentation-derived optical coherence tomography (OCT) retinal layer thickness measures with intracranial volume (a surrogate of head size) and brain substructure volumes in multiple sclerosis (MS). Cross-sectional study. Johns Hopkins University, Baltimore, Maryland. A total of 84 patients with MS and 24 healthy control subjects. High-definition spectral-domain OCT conventional and automated segmentation-derived discrete retinal layer thicknesses and 3-T magnetic resonance imaging brain substructure volumes. Peripapillary retinal nerve fiber layer as well as composite ganglion cell layer+inner plexiform layer thicknesses in the eyes of patients with MS without a history of optic neuritis were associated with cortical gray matter (P=.01 and P=.04, respectively) and caudate (P=.04 and P=.03, respectively) volumes. Inner nuclear layer thickness, also in eyes without a history of optic neuritis, was associated with fluid-attenuated inversion recovery lesion volume (P=.007) and inversely associated with normal-appearing white matter volume (P=.005) in relapsing-remitting MS. As intracranial volume was found to be related with several of the OCT measures in patients with MS and healthy control subjects and is already known to be associated with brain substructure volumes, all OCT-brain substructure relationships were adjusted for intracranial volume. CONCLUSIONS Retinal measures reflect global central nervous system pathology in multiple sclerosis, with thicknesses of discrete retinal layers each appearing to be associated with distinct central nervous system processes. Moreover, OCT measures appear to correlate with intracranial volume in patients with MS and healthy control subjects, an important unexpected factor unaccounted for in prior studies examining the relationships between peripapillary retinal nerve fiber layer thickness and brain substructure volumes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optical coherence tomography: a window into the mechanisms of multiple sclerosis.

            The pathophysiology of multiple sclerosis (MS) is characterized by demyelination, which culminates in a reduction in axonal transmission. Axonal and neuronal degeneration seem to be concomitant features of MS and are probably the pathological processes responsible for permanent disability in this disease. The retina is unique within the CNS in that it contains axons and glia but no myelin, and it is, therefore, an ideal structure within which to visualize the processes of neurodegeneration, neuroprotection, and potentially even neurorestoration. In particular, the retina enables us to investigate a specific compartment of the CNS that is targeted by the disease process. Optical coherence tomography (OCT) can provide high-resolution reconstructions of retinal anatomy in a rapid and reproducible fashion and, we believe, is ideal for precisely modeling the disease process in MS. In this Review, we provide a broad overview of the physics of OCT, the unique properties of this method with respect to imaging retinal architecture, and the applications that are being developed for OCT to understand mechanisms of tissue injury within the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Retinal Damage in Multiple Sclerosis Disease Subtypes Measured by High-Resolution Optical Coherence Tomography

              Background. Optical coherence tomography (OCT) has facilitated characterisation of retinal alterations in MS patients. Only scarce and in part conflicting data exists on different MS subtypes. Objective. To analyse patterns of retinal changes in different subtypes of MS with latest spectral-domain technology. Methods. In a three-centre cross-sectional study 414 MS patients and 94 healthy controls underwent spectral-domain OCT examination. Results. Eyes of MS patients without a previous optic neuritis showed a significant reduction of both retinal nerve fibre layer (RNFL) thickness and total macular volume (TMV) compared to healthy controls independent of the MS subtype (P < 0.001 for all subtypes). RNFL thickness was lower in secondary progressive MS (SPMS) eyes compared to relapsing-remitting MS (RRMS) eyes (P = 0.007), and TMV was reduced in SPMS and primary progressive MS (PPMS) eyes compared to RRMS eyes (SPMS: P = 0.039, PPMS: P = 0.005). Independent of the subtype a more pronounced RNFL thinning and TMV reduction were found in eyes with a previous optic neuritis compared to unaffected eyes. Conclusion. Analysis of this large-scale cross-sectional dataset of MS patients studied with spectral-domain OCT confirmed and allows to generalize previous findings. Furthermore it carves out distinct patterns in different MS subtypes.
                Bookmark

                Author and article information

                Journal
                Neuropsychiatr Dis Treat
                Neuropsychiatr Dis Treat
                Neuropsychiatric Disease and Treatment
                Neuropsychiatric Disease and Treatment
                Dove Medical Press
                1176-6328
                1178-2021
                2018
                05 September 2018
                : 14
                : 2281-2285
                Affiliations
                [1 ]Center of Clinical Neuroscience, Department of Neurology, General University Hospital, 1st Faculty of Medicine, Charles University, Prague Czech Republic, janaprei.lizr@ 123456gmail.com
                [2 ]Department of Statistics and Probability, University of Economics, Prague, Czech Republic
                Author notes
                Correspondence: Jana Lizrova Preiningerova, Center of Clinical Neuroscience, Department of Neurology, General University Hospital, 1st Faculty of Medicine, Charles University, Katerinska, 30, Prague 2, 128 00, Czech Republic, Tel +42 077 313 2535, Fax +42 022 491 7907, Email janaprei.lizr@ 123456gmail.com
                Article
                ndt-14-2281
                10.2147/NDT.S169638
                6130290
                16ec8381-de3f-4c76-aa36-744f55a64bf2
                © 2018 Lizrova Preiningerova et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Neurology
                optical coherence tomography,neurodegeneration,multiple sclerosis,retina
                Neurology
                optical coherence tomography, neurodegeneration, multiple sclerosis, retina

                Comments

                Comment on this article