37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer stem cells in progression of colorectal cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.

          The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of most carcinomas recapitulate the organization of their primary tumours. Although current models explain distinct and important aspects of carcinogenesis, each alone can not explain the sum of the cellular changes apparent in human cancer progression. We suggest an extended, integrated model that is consistent with all aspects of human tumour progression - the 'migrating cancer stem (MCS)-cell' concept.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.

            Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of nanog by OCT4 and SOX2.

              Nanog, Sox2, and Oct4 are transcription factors all essential to maintaining the pluripotent embryonic stem cell phenotype. Through a cooperative interaction, Sox2 and Oct4 have previously been described to drive pluripotent-specific expression of a number of genes. We now extend the list of Sox2-Oct4 target genes to include Nanog. Within the Nanog proximal promoter, we identify a composite sox-oct cis-regulatory element essential for Nanog pluripotent transcription. This element is conserved over 250 million years of cumulative evolution within the eutherian mammals. A Nanog proximal promoter-EGFP (enhanced green fluorescent protein) reporter transgene recapitulates endogenous Nanog mRNA expression in embryonic stem cells and their differentiated derivatives. Sox2 and Oct4 interaction with the Nanog promoter was confirmed through mutagenesis and in vitro binding assays. Electrophoretic mobility shift assays indicate that the Sox2-Oct4 heterodimer forms more efficiently on the composite element within Nanog than the similar element within Fgf4. Using chromatin immunoprecipitation, we show that Oct4 and Sox2 bind to the Nanog promoter in living mouse and human embryonic stem cells. Furthermore, by specific knockdown of Oct4 and Sox2 mRNA by RNA interference in embryonic stem cells, we provide genetic evidence for a link between Oct4, Sox2, and the Nanog promoter. These studies extend the understanding of the pluripotent genetic regulatory network within which the Sox2-Oct4 complex are at the top of the regulatory hierarchy.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                7 September 2018
                22 December 2017
                : 9
                : 70
                : 33403-33415
                Affiliations
                1 Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
                2 Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
                Author notes
                Correspondence to: Deliang Cao, dcao@ 123456siumed.edu
                Article
                23607
                10.18632/oncotarget.23607
                6161799
                30279970
                16e60047-5ce8-4db6-a988-f0582a2c9b18
                Copyright: © 2018 Zhou et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 28 August 2017
                : 5 November 2017
                Categories
                Review

                Oncology & Radiotherapy
                colorectal cancer,cancer stem cells,metastasis,epithelial mesenchymal transition,tumor microenvironment

                Comments

                Comment on this article