164
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A BMP-FGF Morphogen Toggle Switch Drives the Ultrasensitive Expression of Multiple Genes in the Developing Forebrain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or “toggle switch”, which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems.

          Author Summary

          During development, morphogen gradients play a crucial role in transforming a uniform field of cells into regions with distinct cell identities (marked by the expression of specific genes). Finding mechanisms that convert morphogen gradients into sharp borders of gene expression, however, remains a challenge. Cellular ultrasensitivity mechanisms that convert a linear stimulus into an on-off target response offer a good solution for making such borders. In this paper, we show how a cross-inhibitory positive feedback or toggle switch mechanism driven by two extracellular morphogens – BMP and FGF - produces ultrasensitivity in forebrain cells. Experiments with cells and explanted brain tissue reveal that BMPs and FGFs cross inhibit each other's signaling pathway. Such cross inhibition could occur through four possible mechanisms. By an iterative combination of modeling and experiment, we show the toggle switch to be the mechanism underlying cross inhibition, the ultrasensitive expression of multiple genes, and hysteresis in forebrain cells. As the toggle switch explicitly links extracellular morphogens to cellular ultrasensitivity, it provides a mechanism for making multiple sharp borders that can also scale with tissue size – an important issue in pattern formation. This might explain the abundance of BMP-FGF cross inhibition during development.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Morphogen gradients: from generation to interpretation.

          Morphogens are long-range signaling molecules that pattern developing tissues in a concentration-dependent manner. The graded activity of morphogens within tissues exposes cells to different signal levels and leads to region-specific transcriptional responses and cell fates. In its simplest incarnation, a morphogen signal forms a gradient by diffusion from a local source and clearance in surrounding tissues. Responding cells often transduce morphogen levels in a linear fashion, which results in the graded activation of transcriptional effectors. The concentration-dependent expression of morphogen target genes is achieved by their different binding affinities for transcriptional effectors as well as inputs from other transcriptional regulators. Morphogen distribution and interpretation are the result of complex interactions between the morphogen and responding tissues. The response to a morphogen is dependent not simply on morphogen concentration but also on the duration of morphogen exposure and the state of the target cells. In this review, we describe the morphogen concept and discuss the mechanisms that underlie the generation, modulation, and interpretation of morphogen gradients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks.

            Recent analysis of the structure of transcription regulation networks revealed several "network motifs": regulatory circuit patterns that occur much more frequently than in randomized networks. It is important to understand whether these network motifs have specific functions. One of the most significant network motifs is the coherent feedforward loop, in which transcription factor X regulates transcription factor Y, and both jointly regulate gene Z. On the basis of mathematical modeling and simulations, it was suggested that the coherent feedforward loop could serve as a sign-sensitive delay element: a circuit that responds rapidly to step-like stimuli in one direction (e.g. ON to OFF), and at a delay to steps in the opposite direction (OFF to ON). Is this function actually carried out by feedforward loops in living cells? Here, we address this experimentally, using a system with feedforward loop connectivity, the L-arabinose utilization system of Escherichia coli. We measured responses to step-like cAMP stimuli at high temporal resolution and accuracy by means of green fluorescent protein reporters. We show that the arabinose system displays sign-sensitive delay kinetics. This type of kinetics is important for making decisions based on noisy inputs by filtering out fluctuations in input stimuli, yet allowing rapid response. This information-processing function may be performed by the feedforward loop regulation modules that are found in diverse systems from bacteria to humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal.

              BMP receptors determine the intensity of BMP signals via Smad1 C-terminal phosphorylations. Here we show that a finely controlled cell biological pathway terminates this activity. The duration of the activated pSmad1(Cter) signal was regulated by sequential Smad1 linker region phosphorylations at conserved MAPK and GSK3 sites required for its polyubiquitinylation and transport to the centrosome. Proteasomal degradation of activated Smad1 and total polyubiquitinated proteins took place in the centrosome. Inhibitors of the Erk, p38, and JNK MAPKs, as well as GSK3 inhibitors, prolonged the duration of a pulse of BMP7. Wnt signaling decreased pSmad1(GSK3) antigen levels and redistributed it from the centrosome to cytoplasmic LRP6 signalosomes. In Xenopus embryos, it was found that Wnts induce epidermis and that this required an active BMP-Smad pathway. Epistatic experiments suggested that the dorsoventral (BMP) and anteroposterior (Wnt/GSK3) patterning gradients are integrated at the level of Smad1 phosphorylations during embryonic pattern formation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2014
                13 February 2014
                : 10
                : 2
                : e1003463
                Affiliations
                [1 ]Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
                [2 ]Center for Complex Biological Systems, University of California, Irvine, California, United States of America
                [3 ]Department of Computer Science, University of California, Irvine, California, United States of America
                [4 ]Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [5 ]Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States of America
                Princeton University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SS JSH ESF DSC WBH ADL ESM. Performed the experiments: SS JSH ESF DSC. Analyzed the data: SS JSH ADL ESM. Wrote the paper: SS JSH ADL ESM. Software for simulations and analysis of models: SS.

                Article
                PCOMPBIOL-D-13-01588
                10.1371/journal.pcbi.1003463
                3923663
                16e1d279-30d2-47be-b786-67034435758c
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 September 2013
                : 18 December 2013
                Page count
                Pages: 16
                Funding
                The work was funded by NIH R01 NS064587 (ESM), NIH/NIGMS P50-GM076516 (ADL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational biology
                Developmental biology
                Neuroscience
                Systems biology
                Computer science
                Computerized simulations
                Mathematics
                Applied mathematics
                Nonlinear dynamics
                Physics
                Biophysics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article