19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An analysis of existing national action plans for antimicrobial resistance—gaps and opportunities in strategies optimising antibiotic use in human populations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Three approaches to qualitative content analysis.

          Content analysis is a widely used qualitative research technique. Rather than being a single method, current applications of content analysis show three distinct approaches: conventional, directed, or summative. All three approaches are used to interpret meaning from the content of text data and, hence, adhere to the naturalistic paradigm. The major differences among the approaches are coding schemes, origins of codes, and threats to trustworthiness. In conventional content analysis, coding categories are derived directly from the text data. With a directed approach, analysis starts with a theory or relevant research findings as guidance for initial codes. A summative content analysis involves counting and comparisons, usually of keywords or content, followed by the interpretation of the underlying context. The authors delineate analytic procedures specific to each approach and techniques addressing trustworthiness with hypothetical examples drawn from the area of end-of-life care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

            (2022)
            Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tackling antimicrobial resistance in low-income and middle-income countries

              Antimicrobial resistance (AMR) is a global threat that claims 700 000 lives every year. If no urgent actions are taken, by 2050, AMR will cause an estimated loss of 10 million lives and $US100 trillion.1 Over the years, commonly identified infectious agents have developed resistance to antimicrobials. Since the discovery of penicillin in 1928, 20 000 potential resistant genes of nearly 400 different types have been identified.2 Methicillin-resistant Staphylococcus aureus alone causes more than 80 000 severe infections and claims more than 11 000 lives each year.3 The World Bank estimates a reduction in global domestic product per annum of 1.1%–3.8% by 2050 if AMR remains unchecked, and that an investment of US$9 billion per year will be required to counteract the problem.4 AMR affects all countries, but the burden is disproportionately higher in low-income and middle-income countries.1 To halt the spread of AMR, it is important to understand what contributes to its emergence. While the overuse of antimicrobials in both humans and animals is broadly implicated and strategies are developed to counteract such an overuse, the broader factors that contribute to AMR are often overlooked. In addition, national action plans on AMR are often constrained by lack of comprehensive multisectoral and multipronged approaches (eg, too focused on the health sector), and their findings are only relevant for a limited period of time as AMR continues to evolve at a fast pace.5 A recent assessment of country situational analyses against the political, economic, sociological, technological, ecological, legislative, and industry (PESTELI) framework identified important gaps in addressing AMR.6 Indeed, collaborative efforts are necessary to delineate global, regional and local contingency plans for AMR. A multitude of factors contribute to the development of AMR. Many of these factors transcend discipline and sectors. Efforts to counteract AMR through a traditional biomedical approach alone may fail to curb the current challenges. In this editorial, we draw insight from some recent papers in BMJ Global Health on AMR, and we use the PESTELI framework to highlight the multifaceted challenges involved in tackling AMR in low-income and middle-income countries, and the need for a holistic and multisectoral approach. Political factors Weak governance often leads to lack of attention to health system functioning and, hence, to weakened regulations for the antimicrobial stewardship. Poor antimicrobial stewardship and inappropriate antimicrobial use often in substandard doses challenge the efforts to contain the emergence and spread of AMR.7 In addition, budgetary constraints limit the prioritisation for surveillance of AMR.8 Improved surveillance systems and surveillance data, for example, through establishing computerised data repository, are necessary to inform policies and to respond to both the emerging threats and the long-term trends in resistance.9 However, existing surveillance systems to monitor antimicrobial consumption in both humans and animals and to identify the rate and trends in development of resistance are often inadequate.8 Strong political commitment with multistakeholder engagement to strengthen surveillance networks and AMR reporting, and stewardship are essential. The lack of infrastructure due to poor economy, corruption and low preparedness in many low-income and middle-income countries has led to inadequate attention to preventive measures, such as water, sanitation and hygiene, leading to high burden of infectious diseases. Often in such settings, antimicrobials function as a ‘quick-fix’ infrastructure, used in place of and to rescue the fractured infrastructures of care, water, sanitation and hygiene.10 Universal access to water and sanitation alone is expected to lead to a 60% reduction in diarrhoeal illnesses treated with antimicrobials. Maintaining hygiene through hand washing alone by clinicians in healthcare settings can decrease the infectious diseases and the use of antimicrobials by 40%.11 The political awareness and prioritisation of these simple yet highly effective preventive measures remain low; hence, they remain inadequately addressed. Economic factors As health systems in low-income and middle-income countries often lack resources (functional and infrastructural) to reach a large population, more so in rural areas, universal access to primary healthcare services becomes a major challenge.8 Access to appropriate antimicrobials against common infections is imperative to save lives.12 However, because regulatory mechanisms are weak, antimicrobials are often used inappropriately and irresponsibly. The struggle between ensuring universal health coverage and at the same time preserving the currently available antimicrobials is a major concern in low-income and middle-income countries.13 In rural and under-resourced settings of many low-income and middle-income countries, where access to qualified healthcare workers is severely constrained, universal health coverage has been erroneously equated with the availability of antimicrobials.10 Such a quick fix for the weak health systems further exacerbates the inappropriate antimicrobial use. Moreover, in settings where access to high-quality health services at health facilities is constrained by limited functional capacity to serve large populations,13 14 inadequate health coverage and out-of-pocket (OOP) expenditure for healthcare, especially in the private sector, are often catastrophic. In Nepal, for instance, household OOP expenditure for healthcare comprises about 55.4% of health spending, with OOP at private hospitals being up to 80% of the total expenditure at all kinds of hospitals.15 Consequently, healthcare delivery largely depends on informal providers, pharmacists, drug dispensers and traditional practitioners.14 Often unqualified and profit driven, these providers sell antimicrobials over the counter (OTC) for mild to moderate illnesses, a large proportion of which are self-limiting viral infections.16 In addition, poor pharmacovigilance and drug regulation make populations vulnerable to counterfeit and substandard medicines. Due to weak governance entwined with the complex socioeconomic, cultural and behavioural factors that drive healthcare seeking, it is difficult to implement a stringent regulation to control the unregulated OTC dispensing of antimicrobials. Sociological factors Poor educational status and low awareness leave populations with popular myths, cultural practices and belief systems towards the use of medicines, especially antibiotics.16 These social factors and cultural practices, combined with poverty, further leads people to self-medicate against common infections (another quick fix), buy medications from unregulated drug dispensaries, visit traditional practitioners and borrow medicines from their neighbours. Medicines obtained from traditional practitioners are often unknown chemical agents mixed with antimicrobials in substandard doses, which also foster AMR and delay timely treatment at allopathic health centres. Driven by the desire to get well soon and at minimal cost (again, a quick fix), patients often demand treatment regardless of the type of infection (bacterial or viral) and avoid necessary investigations during consultations.7 For instance, in Kenya, patient expectations were often felt as pressure by healthcare practitioners to prescribe antibiotics.17 Technological factors Technological innovations in diagnostics to rapidly detect infections and AMR are critical for both improved patient care and better surveillance.13 Peripheral health facilities often lack laboratory facilities and skilled human resources. Diagnostics to inform the appropriate prescription of antimicrobials are not available at the point of care, while antimicrobials are easily accessible OTC and a wide variety of infections are treated empirically.7 In addition, healthcare innovations through computerised real-time reporting of data are essential for improved surveillance and action. A robust mechanism to routinely monitor diagnostics-based use of antimicrobials through increased reporting of infectious diseases and the prescription is essential. Industry factors In the absence of political, social and economic changes, especially in low-income and middle-income countries, the rise of AMR may only be counteracted through investments in research and development of newer drugs. The decline in stakes of pharmaceutical industries to develop new antibiotics has dwindled in the last few decades compared with drug development in other health conditions such as cancer.1 18 With the diminished production of newer antibiotics and growing AMR, remaining antibiotics have become extremely expensive and are unaffordable in many low-income and middle-income countries.7 Adding on this, pharmaceutical companies’ incentives to medical practitioners and drug dispensers to prescribe specific antimicrobials further escalate the use and cost of antimicrobials. Another way to curb the overuse of antimicrobials is through the use of available vaccines against common infections to reduce the burden of resistant infections. The use of existing pneumococcal vaccine, for instance, can reduce the antimicrobial-resistant infections by more than half.19 However, again, such new vaccines are not easily available and affordable in many low-income and middle-income countries unless they are subsidised with wide coverage by health systems. Ecological factors AMR cannot be tackled well without an ecological approach embedded in the concept of ‘One Health’.13 The rising commercial farming, animal husbandry, food and agricultural products use antimicrobials in huge proportions. The use of antimicrobials have become, paradoxically, a quick-fix economic panacea in producing standard-sized animals, fish and crops, which overlooks the enormous economic losses due to overuse of antimicrobials.10 Around 70% of medically important antimicrobials in the the USA are sold for use in food-producing animals.20 Such widespread antimicrobial use also echoes across Europe.21 Although the available information from many low-income and middle-income countries is limited, empirical estimates suggest that the antimicrobial use in animal food is very high. Use of antimicrobials in these sectors puts a huge amount of drug pressure and accelerates the rate of emergence of AMR. Legislative mechanisms are urgently required to contain the current trend of use of antimicrobials in food and agriculture sectors through greater collaboration with wider stakeholders and multidisciplinary embrace of One Health.22 Conclusion High burden of infectious diseases, poverty, weak governance and health systems, and low awareness in many low-income and middle-income countries remain major challenges in the fight against AMR. Efforts to address AMR globally must take into consideration these peculiar challenges. Low-income and middle-income countries must strengthen their health systems in ways that address these systems issues, with a focus on developing regulatory strategies against unauthorised antimicrobial use, antimicrobial stewardship and treatment guidelines for common infections, along with sustainable public awareness campaigns aimed at changing health-seeking behaviour. These efforts should be based on evidence—on each component of the PESTELI framework—tailored to the context in each setting. Increased investment in research and development of vaccines, newer drugs and improvement in water, sanitation and hygiene to prevent common infections, together with the promotion of diagnostic tests to timely detect and treat infections, are essential to curb the current trends of AMR.
                Bookmark

                Author and article information

                Journal
                The Lancet Global Health
                The Lancet Global Health
                Elsevier BV
                2214109X
                February 2023
                February 2023
                Article
                10.1016/S2214-109X(23)00019-0
                36739875
                1697ceb8-9d57-444d-b9a2-dbaf88f3f198
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article