0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system?

      research-article
      Heliyon
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health.

          We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.

          Highlights

          • Aromatic Plants Environmental Health Engineering (APEHE), a new research direction.

          • Aerosols reverse bacterial resistance by inducing mutations in sdhA, scrA, and PEP.

          • Binding to AKT1, MMP9, and TLR4 could affect human health.

          • Acetaminophen and flurbiprofen occur naturally in the air.

          • Potential to benefit climate, energy, economics and other research areas.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial nitrogen-cycling network

          Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global tree restoration potential

            The restoration of trees remains among the most effective strategies for climate change mitigation. We mapped the global potential tree coverage to show that 4.4 billion hectares of canopy cover could exist under the current climate. Excluding existing trees and agricultural and urban areas, we found that there is room for an extra 0.9 billion hectares of canopy cover, which could store 205 gigatonnes of carbon in areas that would naturally support woodlands and forests. This highlights global tree restoration as our most effective climate change solution to date. However, climate change will alter this potential tree coverage. We estimate that if we cannot deviate from the current trajectory, the global potential canopy cover may shrink by ~223 million hectares by 2050, with the vast majority of losses occurring in the tropics. Our results highlight the opportunity of climate change mitigation through global tree restoration but also the urgent need for action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The function of terpene natural products in the natural world.

              As the largest class of natural products, terpenes have a variety of roles in mediating antagonistic and beneficial interactions among organisms. They defend many species of plants, animals and microorganisms against predators, pathogens and competitors, and they are involved in conveying messages to conspecifics and mutualists regarding the presence of food, mates and enemies. Despite the diversity of terpenes known, it is striking how phylogenetically distant organisms have come to use similar structures for common purposes. New natural roles undoubtedly remain to be discovered for this large class of compounds, given that such a small percentage of terpenes has been investigated so far.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                03 May 2024
                15 May 2024
                03 May 2024
                : 10
                : 9
                : e30322
                Affiliations
                [1]HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
                Article
                S2405-8440(24)06353-9 e30322
                10.1016/j.heliyon.2024.e30322
                11096952
                38756557
                1693cb25-8dd3-4519-a045-e47363d50974
                © 2024 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 10 January 2024
                : 30 March 2024
                : 23 April 2024
                Categories
                Research Article

                Comments

                Comment on this article