9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global warming induced by the emission of greenhouse gases, especially the carbon dioxide, has become the global climate and environmental issues. China has been working in the CO 2 emission reduction and carbon sinks with the purpose of becoming the carbon-neutral country by 2060. The CO 2 capture, utilization and storage (CCUS) technologies and the reforestation technology represented by the Conversion of Cropland to Forestland Program (CCFP) have great potential for sinking CO 2 emission. However, the trade-off among CCFP, CCS/CCUS and Water-Energy-Food (WEF) nexus are not well evaluated. In this paper, the remote-sensing data are collected and used to evaluate the sustainability of CCFP by analyzing the variation of land use and land cover (LULC), crop production, etc. The results show that 13.29% of the cropland in 2001 vanished and converted to grassland (8.3%), mosaic cropland (3%) and urban land (0.98%) in 2019, demonstrating that the CCFP is successful in both WEF nexus and carbon sink. The total crop production has increased around 50% between 2001 and 2019, implying that the CCFP will not lead to the food risk during the conversion of croplands into other types of land in China. A sustainable implementation of CCFP and other environmental Payments for Ecosystem Services (PES) policies in 2019–2060 could reach an estimated total growth of 7.462 billion m 3 in comparison of that in 2018 and the total plantation forest stock of about 10.852 billion m 3 in 2060, with a corresponding minimum CO 2 sink of 2.90 billion tons in 2060. The estimated peak of net equivalent CO 2 emissions before 2030 is about 11.0 billion tons and could not be reduced to zero by 2060 without the large-scale application of the CCS/CCUS technologies as geological sequestration of CO 2. Besides, the application of CCS/CCUS can be beneficial for WEF, e.g., through replacing the water by CO 2 during energy production, especially in the shale gas production in the regions with high water risks in China. In one word, CCS/CCUS and CCFP are two decided pathways of carbon sequestration and should be systematically applied to achieve China’s carbon neutrality by 2060.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease

          Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution mapping of global surface water and its long-term changes.

            The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

              The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Earth Sciences
                Environ Earth Sci
                Springer Science and Business Media LLC
                1866-6280
                1866-6299
                July 2021
                July 08 2021
                July 2021
                : 80
                : 14
                Article
                10.1007/s12665-021-09762-9
                1665736b-450b-4b05-8fa6-06f8707fad8f
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article