44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Wilson's disease

      , , , ,
      The Lancet
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progressive hepatolenticular degeneration, or Wilson's disease, is a genetic disorder of copper metabolism. Knowledge of the clinical presentations and treatment of the disease are important both to the generalist and to specialists in gastroenterology and hepatology, neurology, psychiatry, and paediatrics. Wilson's disease invariably results in severe disability and death if untreated. The diagnosis is easily overlooked but if discovered early, effective treatments are available that will prevent or reverse many manifestations of this disorder. Studies have identified the role of copper in disease pathogenesis and clinical, biochemical, and genetic markers that can be useful in diagnosis. There are several chelating agents and zinc salts for medical therapy. Liver transplantation corrects the underlying pathophysiology and can be lifesaving. The discovery of the Wilson's disease gene has opened up a new molecular diagnostic approach, and could form the basis of future gene therapy.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequencing in microfabricated high-density picolitre reactors.

          The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene.

            Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. The gene (WD) has been mapped to chromosome 13 q14.3. On yeast artificial chromosomes from this region we have identified a sequence, similar to that coding for the proposed copper binding regions of the putative ATPase gene (MNK) defective in Menkes disease. We show that this sequence forms part of a P-type ATPase gene (referred to here as Wc1) that is very similar to MNK, with six putative metal binding regions similar to those found in prokaryotic heavy metal transporters. The gene, expressed in liver and kidney, lies within a 300 kb region likely to include the WD locus. Two WD patients were found to be homozygous for a seven base deletion within the coding region of Wc1. Wc1 is proposed as the gene for WD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnosis and phenotypic classification of Wilson disease.

              Wilson disease is an inherited autosomal recessive disorder of hepatic copper metabolism leading to copper accumulation in hepatocytes and in extrahepatic organs such as the brain and the cornea. Originally Wilson disease was described as a neurodegerative disorder associated with cirrhosis of the liver. Later, Wilson disease was observed in children and adolescents presenting with acute or chronic liver disease without any neurologic symptoms. While diagnosis of neurologic Wilson disease is straightforward, it may be quite difficult in non-neurologic cases. Up to now, no single diagnostic test can exclude or confirm Wilson disease with 100% certainty. In 1993, the gene responsible for Wilson disease was cloned and localized on chromosome 13q14.3 (MIM277900) (1, 2). The Wilson disease gene ATP7B encodes a P-type ATPase. More than 200 disease causing mutations of this gene have been described so far (3). Most of these mutations occur in single families, only a few are more frequent (like H1069Q, 3400delC and 2299insC in Caucasian (4-6) or R778L in Japanese (7), Chinese and Korean patients). Studies of phenotype-genotype relations are hampered by the lack of standard diagnostic criteria and phenotypic classifications. To overcome this problem, a working party discussed these problems in depth at the 8th International Meeting on Wilson disease and Menkes disease in Leipzig/Germany (April 16-18, 2001). After the meeting, a preliminary draft of a consensus report was mailed to all active participants and their comments were incorporated in the final text.
                Bookmark

                Author and article information

                Journal
                The Lancet
                The Lancet
                Elsevier BV
                01406736
                February 2007
                February 2007
                : 369
                : 9559
                : 397-408
                Article
                10.1016/S0140-6736(07)60196-2
                17276780
                16156e0a-a8d7-4903-9d0f-8bb24cb495d4
                © 2007

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article