59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators' self-report

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology (GTM) to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network—the posterior cingulate cortex (PCC). We analyzed first-person data consisting of meditators' accounts of their subjective experience during runs of a real time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of PCC activity during the same runs. We found that for meditators, the subjective experiences of “undistracted awareness” such as “concentration” and “observing sensory experience,” and “effortless doing” such as “observing sensory experience,” “not efforting,” and “contentment,” correspond with PCC deactivation. Further, the subjective experiences of “distracted awareness” such as “distraction” and “interpreting,” and “controlling” such as “efforting” and “discontentment,” correspond with PCC activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to PCC activity, such as the difference between meditation and “trying to meditate.” These findings offer novel insights into the relationship between meditation and mind wandering or self-related thinking and neural activity in the default mode network, driven by first-person reports.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies.

          We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., "anger," "fear"). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann's Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli.

              Cocaine-related cues have been hypothesized to perpetuate drug abuse by inducing a craving response that prompts drug-seeking behavior. However, the mechanisms, underlying neuroanatomy, and specificity of this neuroanatomy are not yet fully understood. To address these issues, experienced cocaine users (N=17) and comparison subjects (N=14) underwent functional magnetic resonance imaging while viewing three separate films that portrayed 1 ) individuals smoking crack cocaine, 2) outdoor nature scenes, and 3) explicit sexual content. Candidate craving sites were identified as those that showed significant activation in the cocaine users when viewing the cocaine film. These sites were then required to show significantly greater activation when contrasted with comparison subjects viewing the cocaine film (population specificity) and cocaine users viewing the nature film (content specificity). Brain regions that satisfied these criteria were largely left lateralized and included the frontal lobe (medial and middle frontal gyri, bilateral inferior frontal gyrus), parietal lobe (bilateral inferior parietal lobule), insula, and limbic lobe (anterior and posterior cingulate gyrus). Of the 13 regions identified as putative craving sites, just three (anterior cingulate, right inferior parietal lobule, and the caudate/lateral dorsal nucleus) showed significantly greater activation during the cocaine film than during the sex film in the cocaine users, which suggests that cocaine cues activated similar neuroanatomical substrates as naturally evocative stimuli in the cocaine users. Finally, contrary to the effects of the cocaine film, cocaine users showed a smaller response than the comparison subjects to the sex film. These data suggest that cocaine craving is not associated with a dedicated and unique neuroanatomical circuitry; instead, unique to the cocaine user is the ability of learned, drug-related cues to produce brain activation comparable to that seen with nondrug evocative stimuli in healthy comparison subjects.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                24 May 2013
                06 August 2013
                2013
                : 7
                : 440
                Affiliations
                [1] 1Yale Therapeutic Neuroscience Clinic, Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
                [2] 2Contemplative Studies Initiative, Clinical and Affective Neuroscience Laboratory, Department of Neuroscience, Brown University Providence, RI, USA
                [3] 3Department of Philosophy and Cognitive Science, City University of New York Graduate Center New York, NY, USA
                [4] 4Department of Family Medicine, Brown University Providence, RI, USA
                Author notes

                Edited by: Wendy Hasenkamp, Mind and Life Institute, USA

                Reviewed by: Giuseppe Pagnoni, University of Modena and Reggio Emilia, Italy; Jean-Philippe Lachaux, Institut National de la Santé et de la Recherche Médicale, France

                *Correspondence: Judson A. Brewer, Yale Therapeutic Neuroscience Clinic, Department of Psychiatry, Yale University School of Medicine, 300 George St. Suite 901, New Haven, CT 06511, USA e-mail: judson.brewer@ 123456yale.edu
                Article
                10.3389/fnhum.2013.00440
                3734786
                23964222
                16145bfe-878c-4d81-a95d-d008e0d3560a
                Copyright © 2013 Garrison, Santoyo, Davis, Thornhill, Kerr and Brewer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 April 2013
                : 17 July 2013
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 29, Pages: 9, Words: 7663
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                neurophenomenology,grounded theory,real time fmri,meditation,posterior cingulate cortex,self-report,introspection,self-referential processing

                Comments

                Comment on this article