5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Colocalized targeting of TGF-β and PD-L1 by bintrafusp alfa elicits distinct antitumor responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bintrafusp alfa (BA) is a bifunctional fusion protein designed for colocalized, simultaneous inhibition of two immunosuppressive pathways, transforming growth factor-β (TGF-β) and programmed death-ligand 1 (PD-L1), within the tumor microenvironment (TME). We hypothesized that targeting PD-L1 to the tumor by BA colocalizes the TGF-β trap (TGF-βRII) to the TME, enabling it to sequester TGF-β in the tumor more effectively than systemic TGF-β blockade, thereby enhancing antitumor activity.

          Methods

          Multiple technologies were used to characterize the TGF-β trap binding avidity. BA versus combinations of anti-PD-L1 and TGF-β trap or the pan-TGF-β antibody fresolimumab were compared in proliferation and two-way mixed lymphocyte reaction assays. Immunophenotyping of tumor-infiltrating lymphocytes (TILs) and RNA sequencing (RNAseq) analysis assessing stromal and immune landscape following BA or the combination therapy were performed in MC38 tumors. TGF-β and PD-L1 co-expression and their associated gene signatures in MC38 tumors and human lung carcinoma tissue were studied with single-cell RNAseq (scRNAseq) and immunostaining. BA-induced internalization, degradation, and depletion of TGF-β were investigated in vitro.

          Results

          BA and fresolimumab had comparable intrinsic binding to TGF-β1, but there was an ~80× avidity-based increase in binding affinity with BA. BA inhibited cell proliferation in TGF-β-dependent and PD-L1-expressing cells more potently than TGF-β trap or fresolimumab. Compared with the combination of anti-PD-L1 and TGF-β trap or fresolimumab, BA enhanced T cell activation in vitro and increased TILs in MC38 tumors, which correlated with efficacy. BA induced distinct gene expression in the TME compared with the combination therapy, including upregulation of immune-related gene signatures and reduced activities in TGF-β-regulated pathways, such as epithelial-mesenchymal transition, extracellular matrix deposition, and fibrosis. Regulatory T cells, macrophages, immune cells of myeloid lineage, and fibroblasts were key PD-L1/TGF-β1 co-expressing cells in the TME. scRNAseq analysis suggested BA modulation of the macrophage phenotype, which was confirmed by histological assessment. PD-L1/TGF-β1 co-expression was also seen in human tumors. Finally, BA induced TGF-β1 internalization and degradation in the lysosomes.

          Conclusion

          BA more effectively blocks TGF-β by targeting TGF-β trap to the tumor via PD-L1 binding. Such colocalized targeting elicits distinct and superior antitumor responses relative to single agent combination therapy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells

            Therapeutic antibodies that block the programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer (mUC) 1–5 . However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here, we examined tumours from a large cohort of mUC patients treated with an anti–PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden (TMB). Lack of response was associated with a signature of transforming growth factor β (TGF-β) signalling in fibroblasts, particularly in patients with CD8+ T cells that were excluded from the tumour parenchyma and instead found in the fibroblast- and collagen-rich peritumoural stroma—a common phenotype among patients with mUC. Using a mouse model that recapitulates this immune excluded phenotype, we found that therapeutic administration of a TGF-β blocking antibody together with anti–PD-L1 reduced TGF-β signalling in stromal cells, facilitated T cell penetration into the centre of the tumour, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding outcome in this setting and suggests that TGF-β shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T cell infiltration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming Growth Factor-β Signaling in Immunity and Cancer

              Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2022
                20 July 2022
                : 10
                : 7
                : e004122
                Affiliations
                [1 ]departmentDepartment of TIP OIO , EMD Serono Research and Development Institute , Billerica, Massachusetts, USA
                [2 ]departmentDepartment of Discovery and Development Technologies , Merck Healthcare KGaA , Darmstadt, Germany
                [3 ]departmentDepartment of Translational Medicine , EMD Serono Research and Development Institute , Billerica, Massachusetts, USA
                [4 ]departmentDepartment of Discovery and Development Technologies , Merck Healthcare KGaA , Yavne, Israel
                [5 ]Be Biopharma , Cambridge, Massachusetts, USA
                [6 ]CAVOS Biotech , Jerusalem, Israel
                [7 ]departmentDepartment of Discovery Development Technologies , EMD Serono Research and Development Institute , Billerica, Massachusetts, USA
                [8 ]LeadXPro AG , Villigen, Switzerland
                [9 ]departmentDepartment of Integrated Supply Chain Operations , EMD Serono Research and Development Institute , Billerica, Massachusetts, USA
                [10 ]D2M Biotherapeutics , Natick, Massachusetts, USA
                Author notes
                [Correspondence to ] Dr Yan Lan; yan.lan@ 123456emdserono.com ; Dr Kin-Ming Lo; kinming.lo@ 123456emdserono.com
                Author information
                http://orcid.org/0000-0001-5150-2818
                http://orcid.org/0000-0001-8688-0704
                http://orcid.org/0000-0001-7054-7245
                http://orcid.org/0000-0001-6714-3725
                Article
                jitc-2021-004122
                10.1136/jitc-2021-004122
                9305820
                35858707
                15f0afa4-30f9-436b-b971-434facbd24a2
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 15 June 2022
                Categories
                Clinical/Translational Cancer Immunotherapy
                1506
                2435
                Original research
                Custom metadata
                unlocked

                immunotherapy,lymphocytes, tumor-infiltrating,tumor microenvironment,gene expression profiling,immunoassay

                Comments

                Comment on this article