8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Position Control of Magnetic Levitation Ball Based on an Improved Adagrad Algorithm and Deep Neural Network Feedforward Compensation Control

      1 , 1 , 1
      Mathematical Problems in Engineering
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To control the position of the magnetic levitation ball more accurately, this paper proposes a deep neural network feedforward compensation controller based on an improved Adagrad optimization algorithm. The control structure of the controller consists of a deep neural network identifier, a deep neural network feedforward compensator, and a PID controller. First, the dynamic inverse model of the magnetic levitation ball is established by the deep neural network identifier which is trained online based on the improved Adagrad algorithm, and the trained network parameters are dynamically copied to the deep neural network feedforward compensator. Then, the position control of the magnetic levitation ball system is realized by the output of the feedforward compensator and the PID controller. Simulations and experiments illustrate that the accuracy of the deep network feedforward compensation control based on an improved Adagrad algorithm is higher, and its control system shows good dynamic and static performance and robustness to some extent.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A new metaheuristic for numerical function optimization: Vortex Search algorithm

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations

                Bookmark

                Author and article information

                Contributors
                Journal
                Mathematical Problems in Engineering
                Mathematical Problems in Engineering
                Hindawi Limited
                1563-5147
                1024-123X
                December 21 2020
                December 21 2020
                : 2020
                : 1-13
                Affiliations
                [1 ]College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
                Article
                10.1155/2020/8935423
                15efd15b-7d06-455a-b71a-898016e2e95b
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article