0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Significantly Improved Energy Storage Density of Polypropylene Nanocomposites via Macroscopic and Mesoscopic Structure Designs

      , , , , , , ,
      Frontiers in Electronic Materials
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymer dielectrics with high breakdown strength are very competitively used in the dielectric capacitor, which is widely applied in pulsed power devices and power systems due to their ultra-high power density. The polypropylene (PP) film is the most popularly used polymer for the dielectric capacitor in the market. However, its low energy density cannot meet the emerging demand for miniaturized, compact, and high-energy performance dielectrics. Therefore, it is urgent to raise the energy storage density of the polypropylene film. Here, this study described the improved energy storage density of polypropylene nanocomposites via macroscopic and mesoscopic structure designs. The ABA-structured, BAB-structured, and single-layered nanocomposites were prepared by melting blending and hot-pressing methods, where “A” and “B” films refer to PP/MgO and PP/BaTO 3 nanocomposite dielectrics, respectively. Then, the microstructure, dielectric, breakdown, and energy storage properties of these nanocomposite dielectrics were tested. According to the test results, for the sandwich-structured dielectrics, the B layer and the interface between adjacent layers can increase the polarization, and the A layer and the barrier at the interface can reduce the charge mobility. In addition, the sandwich structures can redistribute the electric field. Correspondingly, the breakdown strength and permittivity of PP dielectrics are improved synergistically. Compared to the PP nanocomposite dielectrics with the BAB structure, the dielectric with the ABA structure exhibits more excellent energy storage performance. The largest energy storage density of ABA films with a BaTO 3 content of 45 wt% in the B layer is 3.10 J/cm 3, which is 67% higher than that of pure PP. The study provides a new concept for improving the energy storage performance of polymer nanocomposite dielectrics from the perspective of macroscopic and mesoscopic structure designs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

          Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flexible nanodielectric materials with high permittivity for power energy storage.

            Study of flexible nanodielectric materials (FNDMs) with high permittivity is one of the most active academic research areas in advanced functional materials. FNDMs with excellent dielectric properties are demonstrated to show great promise as energy-storage dielectric layers in high-performance capacitors. These materials, in common, consist of nanoscale particles dispersed into a flexible polymer matrix so that both the physical/chemical characteristics of the nanoparticles and the interaction between the nanoparticles and the polymers have crucial effects on the microstructures and final properties. This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures. Possible reasons for several persistent issues are analyzed and the general strategies to realize FNDMs with excellent integral properties are summarized. The review further highlights some exciting examples of these FNDMs for power-energy-storage applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Interface design for high energy density polymer nanocomposites

              A detailed overview on interface design and control in polymer based composite dielectrics for energy storage applications. This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications. The methods employed for interface design in composite systems are described for a variety of filler types and morphologies, along with novel approaches employed to build hierarchical interfaces for multi-scale control of properties. Efforts to achieve a close control of interfacial properties and geometry are then described, which includes the creation of either flexible or rigid polymer interfaces, the use of liquid crystals and developing ceramic and carbon-based interfaces with tailored electrical properties. The impact of the variety of interface structures on composite polarization and energy storage capability are described, along with an overview of existing models to understand the polarization mechanisms and quantitatively assess the potential benefits of different structures for energy storage. The applications and properties of such interface-controlled materials are then explored, along with an overview of existing challenges and practical limitations. Finally, a summary and future perspectives are provided to highlight future directions of research in this growing and important area.
                Bookmark

                Author and article information

                Journal
                Frontiers in Electronic Materials
                Front. Electron. Mater
                Frontiers Media SA
                2673-9895
                May 25 2022
                May 25 2022
                : 2
                Article
                10.3389/femat.2022.904405
                15df5267-86cb-42a4-ab3d-e35b69c1fba6
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article