100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DiANNA: a web server for disulfide connectivity prediction

      research-article
      1 , 1 , 2 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the protein's secondary structure, then PSIBLAST is run against the non-redundant SwissProt to obtain a multiple alignment of the input sequence. The predicted secondary structure and the profile arising from this alignment are used in the training phase of our neural network. Next, cysteine oxidation state is predicted, then each pair of cysteines in the protein sequence is assigned a likelihood of forming a disulfide bond—this is performed by means of a novel architecture (diresidue neural network). Finally, Rothberg's implementation of Gabow's maximum weighted matching algorithm is applied to diresidue neural network scores in order to produce the final connectivity prediction. Our novel neural network-based approach achieves results that are comparable and in some cases better than the current state-of-the-art methods.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          The CHAOS/DIALIGN WWW server for multiple alignment of genomic sequences.

          Cross-species sequence comparison is a powerful approach to analyze functional sites in genomic sequences and many discoveries have been made based on genomic alignments. Herein, we present a WWW-based software system for multiple alignment of large genomic sequences. Our server utilizes the previously developed combination of CHAOS and DIALIGN to achieve both speed and alignment accuracy. CHAOS is a fast database search tool that creates a list of local sequence similarities. These are used by DIALIGN as anchor points to speed up the final alignment procedure. The resulting alignment is returned to the user in different formats together with a list of anchor points found by CHAOS. The CHAOS/DIALIGN software is freely available at http://dialign.gobics.de/chaos-dialign-submission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid neighbours and detailed conformational analysis of cysteines in proteins.

            Here we present an investigation of the contacts that cysteines make with residues in their three-dimensional environment and a comprehensive analysis of the conformational features of 351 disulphide bridges in 131 non-homologous single-chain protein structures. Upstream half-cystines preferentially have downstream neighbours, whereas downstream half-cystines have mainly upstream neighbours. Non-disulphide bridged cysteines (free cysteines) have no preference for upstream or downstream neighbours. Free cysteines have more contacts to non-polar residues and fewer contacts to polar/charged residues than half-cystines, which correlates with our observation that free cysteines are more buried than half-cystines. Free cysteines prefer to be located in alpha-helices while no clear preference is observed for half-cystines. Histidine and methionine are preferentially seen nearby free cysteines. Tryptophan is found preferentially nearby half-cystines. We have merged sequential and spatial information, and highly interesting novel patterns have been discovered. The number of cysteines per protein is typically an even number, peaking at four. The number of residues separating two half-cystines is preferentially 11 and 16. Left-handed and right-handed disulphide bridges display different conformational parameters. Here we present side chain torsion angle information based on a 5-12 times larger number of disulphide bridges than has previously been published. Considering the importance of cysteines for maintaining the 3D-structural scaffold of proteins, it is essential to have as accurate information as possible concerning the packing and conformational preferences. The present work may provide key information for engineering the protein environment around cysteines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disulfide connectivity prediction using secondary structure information and diresidue frequencies.

              We describe a stand-alone algorithm to predict disulfide bond partners in a protein given only the amino acid sequence, using a novel neural network architecture (the diresidue neural network), and given input of symmetric flanking regions of N-terminus and C-terminus half-cystines augmented with residue secondary structure (helix, coil, sheet) as well as evolutionary information. The approach is motivated by the observation of a bias in the secondary structure preferences of free cysteines and half-cystines, and by promising preliminary results we obtained using diresidue position-specific scoring matrices. As calibrated by receiver operating characteristic curves from 4-fold cross-validation, our conditioning on secondary structure allows our novel diresidue neural network to perform as well as, and in some cases better than, the current state-of-the-art method. A slight drop in performance is seen when secondary structure is predicted rather than being derived from three-dimensional protein structures.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2005
                01 July 2005
                27 June 2005
                : 33
                : Web Server issue
                : W230-W232
                Affiliations
                1Department of Biology, Boston College Chestnut Hill, MA 02467, USA
                2Department of Computer Science (courtesy appointment), Boston College Chestnut Hill, MA 02467, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 617 552 1332; Fax: +1 617 552 2011; Email: clote@ 123456bc.edu
                Article
                10.1093/nar/gki412
                1160173
                15980459
                15d44dd4-97c7-416a-a3e2-c47666592fdb
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 13 February 2005
                : 21 March 2005
                : 21 March 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article