1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Purified monoammonium phosphate fertilizer promotes the yield and reduces heavy metals accumulation in tomato (Lycopersicon esculentum L.)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          The story of phosphorus: Global food security and food for thought

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trace elements in agroecosystems and impacts on the environment.

            Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

              Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried outin situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Environmental Science and Technology
                Int. J. Environ. Sci. Technol.
                Springer Science and Business Media LLC
                1735-1472
                1735-2630
                March 09 2021
                Article
                10.1007/s13762-021-03223-3
                15cdf645-b92f-44c0-9102-1bc659fb7fcf
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article