6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon ( Vitis vinifera L.) Grape Berries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The lipoxygenase pathway.

          Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism.

            Green leaf volatiles (GLVs) are C(6) aldehydes, alcohols, and their esters formed through the hydroperoxide lyase pathway of oxylipin metabolism. Plants start to form GLVs after disruption of their tissues and after suffering biotic or abiotic stresses. GLV formation is thought to be regulated at the step of lipid-hydrolysis, which provides free fatty acids to the pathway. Recently, studies dissecting the physiological significance of GLVs in plants have emerged, and it has been postulated that GLVs are important molecules both for signaling within and between plants and for allowing plants and other organisms surrounding them to recognize or compete with each other.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors.

              Jasmonic acid and methyl jasmonate have been shown previously to be powerful inducers of proteinase inhibitors in tomato, tobacco, and alfalfa leaves. We show here that when proposed octadecanoid precursors of jasmonic acid, i.e., linolenic acid, 13(S)-hydroperoxylinolenic acid, and phytodienoic acid, were applied to the surfaces of tomato leaves, these compounds also served as powerful inducers of proteinase inhibitor I and II synthesis, a simulation of a wound response. By contrast, compounds closely related to the precursors but which are not intermediates in the jasmonic acid biosynthetic pathway did not induce proteinase inhibitor synthesis. These results suggest that the octadecanoid intermediates may participate in a lipid-based signaling system that activates proteinase inhibitor synthesis in response to insect and pathogen attack.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                12 October 2016
                October 2016
                : 21
                : 10
                : 1354
                Affiliations
                [1 ]College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; juyanlun@ 123456163.com (Y.-L.J.); liumin272@ 123456163.com (M.L.); zhaohuizh163@ 123456163.com (H.Z.); mjfwine@ 123456nwsuaf.edu.cn (J.-F.M.)
                [2 ]Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi, China
                Author notes
                [* ]Correspondence: fangyulin@ 123456nwsuaf.edu.cn ; Tel.: +86-29-8709-1874
                Article
                molecules-21-01354
                10.3390/molecules21101354
                6273220
                27754331
                15c4450f-cdb0-4420-965e-224811afed1e
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 August 2016
                : 08 October 2016
                Categories
                Article

                plant hormones,physicochemical,volatile aroma,cabernet sauvignon

                Comments

                Comment on this article