The goals of a genital herpes vaccine are to prevent painful genital lesions and reduce or eliminate subclinical infection that risks transmission to partners and newborns. We evaluated a trivalent glycoprotein vaccine containing herpes simplex virus type 2 (HSV-2) entry molecule glycoprotein D (gD2) and two immune evasion molecules: glycoprotein C (gC2), which binds complement C3b, and glycoprotein E (gE2), which blocks immunoglobulin G (IgG) Fc activities. The trivalent vaccine was administered as baculovirus proteins with CpG and alum, or the identical amino acids were expressed using nucleoside-modified mRNA in lipid nanoparticles (LNPs). Both formulations completely prevented genital lesions in mice and guinea pigs. Differences emerged when evaluating subclinical infection. The trivalent protein vaccine prevented dorsal root ganglia infection, and day 2 and 4 vaginal cultures were negative in 23 of 30 (73%) mice compared with 63 of 64 (98%) in the mRNA group ( P = 0.0012). In guinea pigs, 5 of 10 (50%) animals in the trivalent subunit protein group had vaginal shedding of HSV-2 DNA on 19 of 210 (9%) days compared with 2 of 10 (20%) animals in the mRNA group that shed HSV-2 DNA on 5 of 210 (2%) days ( P = 0.0052). The trivalent mRNA vaccine was superior to trivalent proteins in stimulating ELISA IgG antibodies, neutralizing antibodies, antibodies that bind to crucial gD2 epitopes involved in entry and cell-to-cell spread, CD4 + T cell responses, and T follicular helper and germinal center B cell responses. The trivalent nucleoside-modified mRNA-LNP vaccine is a promising candidate for human trials.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.