24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue‐derived extracellular vesicles in cancers and non‐cancer diseases: Present and future

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs) are lipid‐bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue‐derived EVs (Ti‐EVs). Ti‐EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti‐EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti‐EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid‐derived EVs or cell culture‐derived EVs; however, the number of studies on Ti‐EVs remains insufficient. Herein, we summarize the latest advances in Ti‐EVs for cancers and non‐cancer diseases. We propose the future application of Ti‐EVs in basic research and clinical practice. Workflows for Ti‐EV isolation and characterization between cancers and non‐cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti‐EVs and provide potential directions.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hallmarks of Cancer: The Next Generation

            The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer statistics, 2020

              Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
                Bookmark

                Author and article information

                Contributors
                lin-lin.bu@whu.edu.cn
                liubing9909@whu.edu.cn
                geraldchan@whu.edu.cn
                Journal
                J Extracell Vesicles
                J Extracell Vesicles
                10.1002/(ISSN)2001-3078
                JEV2
                Journal of Extracellular Vesicles
                John Wiley and Sons Inc. (Hoboken )
                2001-3078
                16 December 2021
                December 2021
                : 10
                : 14 ( doiID: 10.1002/jev2.v10.14 )
                : e12175
                Affiliations
                [ 1 ] The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
                [ 2 ] Department of Oral Maxillofacial Head Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan Hubei China
                [ 3 ] Frontier Science Center for Immunology and Metabolism Wuhan University Wuhan China
                Author notes
                [*] [* ] Correspondence

                Lin‐Lin Bu, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

                Email: lin-lin.bu@ 123456whu.edu.cn

                Bing Liu, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

                Email: liubing9909@ 123456whu.edu.cn

                Gang Chen, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

                Email: geraldchan@ 123456whu.edu.cn

                Article
                JEV212175
                10.1002/jev2.12175
                8678102
                34918479
                15a245d6-a891-48a0-bb83-4940afc831a2
                © 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 02 November 2021
                : 28 July 2021
                : 24 November 2021
                Page count
                Figures: 8, Tables: 3, Pages: 27, Words: 18560
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81922038
                Award ID: 81870361
                Award ID: 81702703
                Award ID: 82001066
                Award ID: 81872203
                Funded by: Hubei Natural Science Foundation
                Award ID: 2020CFA068
                Funded by: Wuhan Municipal Science and Technology Bureau , doi 10.13039/501100010888;
                Award ID: 2020020601012249
                Funded by: China Postdoctoral Science Foundation , doi 10.13039/501100002858;
                Award ID: 2018M630883
                Award ID: 2019T120688
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                December 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.7.0 mode:remove_FC converted:17.12.2021

                cancer,clinical application,exosomes,extracellular vesicles,tissue‐derived extracellular vesicles

                Comments

                Comment on this article