COVID-19 has infected millions of people worldwide. One of the most important hurdles in controlling the spread of this disease is the inefficiency and lack of medical tests. Computed tomography (CT) scans are promising in providing accurate and fast detection of COVID-19. However, determining COVID-19 requires highly trained radiologists and suffers from inter-observer variability. To remedy these limitations, this paper introduces an automatic methodology based on an ensemble of deep transfer learning for the detection of COVID-19.
A total of 15 pre-trained convolutional neural networks (CNNs) architectures: EfficientNets(B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50 and Inception_resnet_v2 are used and then fine-tuned on the target task. After that, we built an ensemble method based on majority voting of the best combination of deep transfer learning outputs to further improve the recognition performance. We have used a publicly available dataset of CT scans, which consists of 349 CT scans labeled as being positive for COVID-19 and 397 negative COVID-19 CT scans that are normal or contain other types of lung diseases.
The experimental results indicate that the majority voting of 5 deep transfer learning architecture with EfficientNetB0, EfficientNetB3, EfficientNetB5, Inception_resnet_v2, and Xception has the higher results than the individual transfer learning structure and among the other models based on precision (0.857), recall (0.854) and accuracy (0.85) metrics in diagnosing COVID-19 from CT scans.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.