19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bone regeneration is a complex procedure that involves an interaction between osteogenesis and inflammation. Macrophages in the microenvironment are instrumental in bone metabolism. Amount evidence have revealed that exosomes transmitting lncRNA is crucial nanocarriers for cellular interactions in various biotic procedures, especially, osteogenesis. However, the underlying mechanisms of the regulatory relationship between the exosomes and macrophages are awaiting clarification. In the present time study, we aimed to explore the roles of human umbilical vein endothelial cells (HUVECs)-derived exosomes carrying nuclear enrichment enriched transcript 1 (NEAT1) in the osteogenesis mediated by M2 polarized macrophages and elucidate the underlying mechanisms.

          Results

          We demonstrated HUVECs-derived exosomes expressing NEAT1 significantly enhanced M2 polarization and attenuated LPS-induced inflammation in vitro . Besides, the conditioned medium from macrophages induced by the exosomes indirectly facilitated the migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Mechanically, Exos carrying NEAT1 decreased remarkably both expression of dead-box helicase 3X-linked (DDX3X) and nod-like receptor protein 3 (NLRP3). The level of NLRP3 protein increased significantly after RAW264.7 cells transfected with DDX3X overexpression plasmid. Additionally, the knockdown of NEAT1 in exosomes partially counteracted the aforementioned effect of Exos. The results of air pouch rat model demonstrated that HUVECs-derived exosomes increased anti-inflammatory cytokines (IL-10) and decreased pro-inflammatory cytokines (IL-1β and IL-6) significantly in vivo, contributing to amelioration of LPS-induced inflammation. Afterwards, we further confirmed that the HUVECs-derived exosomes encapsulated in alginate/gelatin methacrylate (GelMA) interpenetrating polymer network (IPN) hydrogels could promote the bone regeneration, facilitate the angiogenesis, increase the infiltration of M2 polarized macrophages as well as decrease NLRP3 expression in the rat calvarial defect model.

          Conclusions

          HUVECs-derived exosomes enable transmitting NEAT1 to alleviate inflammation by inducing M2 polarization of macrophages through DDX3X/NLRP3 regulatory axis, which finally contributes to osteogenesis with the aid of alginate/GelMA IPN hydrogels in vivo. Thus, our study provides insights in bone healing with the aid of HUVECs-derived exosomes-encapsulated composite hydrogels, which exhibited potential towards the use of bone tissue engineering in the foreseeable future.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12951-023-01855-w.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The biology, function, and biomedical applications of exosomes

          The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional Classification and Experimental Dissection of Long Noncoding RNAs

            Over the last decade, it has been increasingly demonstrated that the genomes of many species are pervasively transcribed, resulting in the production of numerous long noncoding RNAs (lncRNAs). At the same time, it is now appreciated that many types of DNA regulatory elements, such as enhancers and promoters, regularly initiate bidirectional transcription. Thus, discerning functional noncoding transcripts from a vast transcriptome is a paramount priority, and challenge, for the lncRNA field. In this review, we aim to provide a conceptual and experimental framework for classifying and elucidating lncRNA function. We categorize lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans , and propose an experimental approach to dissect lncRNA activity based on these classifications. These strategies to further understand lncRNAs promise to reveal new and unanticipated biology, with great potential to advance our understanding of normal physiology and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomes

              Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.
                Bookmark

                Author and article information

                Contributors
                yuanhaowu@hust.edu.cn
                wangjiecong1982@sina.com
                an_ran2018@163.com
                Journal
                J Nanobiotechnology
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central (London )
                1477-3155
                20 March 2023
                20 March 2023
                2023
                : 21
                : 98
                Affiliations
                [1 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Plastic Surgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; Wuhan, 430022 China
                [2 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Vascular Surgery, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; Wuhan, 430022 China
                [3 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Immunology, School of Basic Medicine, , Tongji Medical College, Huazhong University of Science and Technology, ; Wuhan, 430022 China
                [4 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Orthopaedics, , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; Wuhan, 430022 China
                Article
                1855
                10.1186/s12951-023-01855-w
                10029245
                36941678
                156705a3-86c2-4a17-b85c-077d381b2271
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 30 November 2022
                : 10 March 2023
                Funding
                Funded by: This work was supported by the National Natural Science Foundation of China No.81901977
                Funded by: This work was supported by the National Natural Science Foundation of China No.82002366
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Biotechnology
                exosome,macrophage polarization,neat1,osteogenesis,inflammation
                Biotechnology
                exosome, macrophage polarization, neat1, osteogenesis, inflammation

                Comments

                Comment on this article