45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The cell biology of systemic insulin function

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tokarz et al. review the cell biology of insulin physiology throughout the body, from synthesis to the delivery, action, and final degradation of insulin.

          Abstract

          Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control, delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or “stations” of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin’s biosynthesis in and export from the β-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin’s action on the blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal degradation of insulin to end its action. Cellular discernment of insulin’s availability and action should prove critical to understanding its pivotal physiological functions and how their failure leads to diabetes.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial cells synthesize nitric oxide from L-arginine.

            Nitric oxide (NO) released by vascular endothelial cells accounts for the relaxation of strips of vascular tissue and for the inhibition of platelet aggregation and platelet adhesion attributed to endothelium-derived relaxing factor. We now demonstrate that NO can be synthesized from L-arginine by porcine aortic endothelial cells in culture. Nitric oxide was detected by bioassay, chemiluminescence or by mass spectrometry. Release of NO from the endothelial cells induced by bradykinin and the calcium ionophore A23187 was reversibly enhanced by infusions of L-arginine and L-citrulline, but not D-arginine or other close structural analogues. Mass spectrometry studies using 15N-labelled L-arginine indicated that this enhancement was due to the formation of NO from the terminal guanidino nitrogen atom(s) of L-arginine. The strict substrate specificity of this reaction suggests that L-arginine is the precursor for NO synthesis in vascular endothelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

              Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                Rockefeller University Press
                0021-9525
                1540-8140
                02 July 2018
                : 217
                : 7
                : 2273-2289
                Affiliations
                [1 ]Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
                [2 ]Department of Physiology, University of Toronto, Toronto, Ontario, Canada
                [3 ]Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
                [4 ]Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
                Author notes
                Correspondence to Amira Klip: amira@ 123456sickkids.ca
                [*]

                V.L. Tokarz and P.E. MacDonald contributed equally to this paper.

                Author information
                http://orcid.org/0000-0002-5439-6288
                http://orcid.org/0000-0001-7906-0302
                Article
                201802095
                10.1083/jcb.201802095
                6028526
                29622564
                156573cd-5788-4531-bfe2-78e5d8486228
                © 2018 Tokarz et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 15 February 2018
                : 21 March 2018
                : 23 March 2018
                Funding
                Funded by: Canadian Institutes of Health Research, DOI https://doi.org/10.13039/501100000024;
                Award ID: FRN 148451
                Funded by: Canadian Institutes of Health Research, DOI https://doi.org/10.13039/501100000024;
                Award ID: FRN: FND-143203
                Funded by: University of Toronto, DOI https://doi.org/10.13039/501100003579;
                Funded by: The Hospital for Sick Children, DOI https://doi.org/10.13039/501100006126;
                Categories
                Reviews
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article