4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Public perceptions and interactions with UK COVID-19 Test, Trace and Isolate policies, and implications for pandemic infectious disease modelling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The efforts to contain SARS-CoV-2 and reduce the impact of the COVID-19 pandemic have been supported by Test, Trace and Isolate (TTI) systems in many settings, including the United Kingdom. Mathematical models of transmission and TTI interventions, used to inform design and policy choices, make assumptions about the public’s behaviour in the context of a rapidly unfolding and changeable emergency. This study investigates public perceptions and interactions with UK TTI policy in July 2021, assesses them against how TTI processes are conceptualised and represented in models, and then interprets the findings with modellers who have been contributing evidence to TTI policy.

          Methods

          20 members of the public recruited via social media were interviewed for one hour about their perceptions and interactions with the UK TTI system. Thematic analysis identified key themes, which were then presented back to a workshop of pandemic infectious disease modellers who assessed these findings against assumptions made in TTI intervention modelling. Workshop members co-drafted this report.

          Results

          Themes included education about SARS-CoV-2, perceived risks, trust, mental health and practical concerns. Findings covered testing practices, including the uses of and trust in different types of testing, and the challenges of testing and isolating faced by different demographic groups. This information was judged as consequential to the modelling process, from guiding the selection of research questions, influencing choice of model structure, informing parameter ranges and validating or challenging assumptions, to highlighting where model assumptions are reasonable or where their poor reflection of practice might lead to uninformative results.

          Conclusions

          We conclude that deeper engagement with members of the public should be integrated at regular stages of public health intervention modelling.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Using thematic analysis in psychology

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts

            Summary Background Isolation of cases and contact tracing is used to control outbreaks of infectious diseases, and has been used for coronavirus disease 2019 (COVID-19). Whether this strategy will achieve control depends on characteristics of both the pathogen and the response. Here we use a mathematical model to assess if isolation and contact tracing are able to control onwards transmission from imported cases of COVID-19. Methods We developed a stochastic transmission model, parameterised to the COVID-19 outbreak. We used the model to quantify the potential effectiveness of contact tracing and isolation of cases at controlling a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-like pathogen. We considered scenarios that varied in the number of initial cases, the basic reproduction number (R 0), the delay from symptom onset to isolation, the probability that contacts were traced, the proportion of transmission that occurred before symptom onset, and the proportion of subclinical infections. We assumed isolation prevented all further transmission in the model. Outbreaks were deemed controlled if transmission ended within 12 weeks or before 5000 cases in total. We measured the success of controlling outbreaks using isolation and contact tracing, and quantified the weekly maximum number of cases traced to measure feasibility of public health effort. Findings Simulated outbreaks starting with five initial cases, an R 0 of 1·5, and 0% transmission before symptom onset could be controlled even with low contact tracing probability; however, the probability of controlling an outbreak decreased with the number of initial cases, when R 0 was 2·5 or 3·5 and with more transmission before symptom onset. Across different initial numbers of cases, the majority of scenarios with an R 0 of 1·5 were controllable with less than 50% of contacts successfully traced. To control the majority of outbreaks, for R 0 of 2·5 more than 70% of contacts had to be traced, and for an R 0 of 3·5 more than 90% of contacts had to be traced. The delay between symptom onset and isolation had the largest role in determining whether an outbreak was controllable when R 0 was 1·5. For R 0 values of 2·5 or 3·5, if there were 40 initial cases, contact tracing and isolation were only potentially feasible when less than 1% of transmission occurred before symptom onset. Interpretation In most scenarios, highly effective contact tracing and case isolation is enough to control a new outbreak of COVID-19 within 3 months. The probability of control decreases with long delays from symptom onset to isolation, fewer cases ascertained by contact tracing, and increasing transmission before symptoms. This model can be modified to reflect updated transmission characteristics and more specific definitions of outbreak control to assess the potential success of local response efforts. Funding Wellcome Trust, Global Challenges Research Fund, and Health Data Research UK.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

              The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analyzed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines (‘lock-downs’) that are harmful to society. We discuss the ethical requirements for an intervention of this kind.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                F1000Research
                F1000Res
                F1000 Research Ltd
                2046-1402
                2022
                September 6 2022
                : 11
                : 1005
                Article
                10.12688/f1000research.124627.1
                155bdb28-1866-4052-8263-26d032846685
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article