2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasmalogens and platelet‐activating factor roles in chronic inflammatory diseases

      1 , 2 , 3 , 4 , 5 , 6 , 7
      BioFactors
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti‐inflammatory responses most likely involve the plasmalogen signal pathway; pro‐inflammatory responses recruit arachidonic acid, a precursor of pro‐inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti‐PAF activity has strong anti‐inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti‐inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF‐related chronic inflammatory pathologies.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          How mitochondria produce reactive oxygen species

          The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2 •−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2 •− production within the matrix of mammalian mitochondria. The flux of O2 •− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2 •− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2 •− production is far lower. The generation of O2 •− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2 •− generation by mitochondria in vivo from O2 •−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2 •− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Chronic inflammation in the etiology of disease across the life span

            Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eicosanoid storm in infection and inflammation.

              Controlled immune responses to infection and injury involve complex molecular signalling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network that is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signalling, similar to cytokine signalling and inflammasome formation, has primarily been viewed as a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BioFactors
                BioFactors
                Wiley
                0951-6433
                1872-8081
                November 2022
                November 12 2022
                November 2022
                : 48
                : 6
                : 1203-1216
                Affiliations
                [1 ] Division of Medical Sciences University of Victoria Victoria British Columbia Canada
                [2 ] Axe Neurosciences Centre de recherche du CHU de Québec‐Université Laval Québec City Canada
                [3 ] Department of Molecular Medicine Université de Laval Québec City Canada
                [4 ] Neurology and Neurosurgery Department McGill University Montréal Canada
                [5 ] Department of Biochemistry and Molecular Biology University of British Columbia Vancouver British Columbia Canada
                [6 ] Department of Physiology, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
                [7 ] Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
                Article
                10.1002/biof.1916
                36370412
                153a4bc3-3f84-4cce-bdb8-d7a254c1c236
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article