Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          The integrated stress response.

          In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The danger model: a renewed sense of self.

            For over 50 years immunologists have based their thoughts, experiments, and clinical treatments on the idea that the immune system functions by making a distinction between self and nonself. Although this paradigm has often served us well, years of detailed examination have revealed a number of inherent problems. This Viewpoint outlines a model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DAMP-sensing receptors in sterile inflammation and inflammatory diseases

              The innate immune system has the capacity to detect 'non-self' molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Science and Business Media LLC
                1759-4774
                1759-4782
                August 5 2020
                Article
                10.1038/s41571-020-0413-z
                32760014
                14f96e11-7aac-4375-bf3e-0503c3e798fd
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article