41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sensors. The number of works related to biosensing devices integrating electrospun nanofibers has also increased substantially over the last decade. This review provides an overview of the current research activities and new trends in the field. Retaining the bioreceptor functionality is one of the main challenges associated with the production of nanofiber-based biosensing interfaces. The bioreceptors can be immobilized using various strategies, depending on the physical and chemical characteristics of both bioreceptors and nanofiber scaffolds, and on their interfacial interactions. The production of nanobiocomposites constituted by carbon, metal oxide or polymer electrospun nanofibers integrating bioreceptors and conductive nanomaterials (e.g., carbon nanotubes, metal nanoparticles) has been one of the major trends in the last few years. The use of electrospun nanofibers in ELISA-type bioassays, lab-on-a-chip and paper-based point-of-care devices is also highly promising. After a short and general description of electrospinning process, the different strategies to produce electrospun nanofiber biosensing interfaces are discussed.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: not found
          • Article: not found

          Point of care diagnostics: status and future.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbon nanofibers prepared via electrospinning.

            Carbon nanofibers prepared via electrospinning and following carbonization are summarized by focusing on the structure and properties in relation to their applications, after a brief review of electrospinning of some polymers. Carbon precursors, pore structure control, improvement in electrical conductivity,and metal loading into carbon nanofibers via electrospinning are discussed from the viewpoint of structure and texture control of carbon. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of key challenges of electrospun scaffolds for tissue-engineering applications.

              Tissue engineering holds great promise to develop functional constructs resembling the structural organization of native tissues to improve or replace biological functions, with the ultimate goal of avoiding organ transplantation. In tissue engineering, cells are often seeded into artificial structures capable of supporting three-dimensional (3D) tissue formation. An optimal scaffold for tissue-engineering applications should mimic the mechanical and functional properties of the extracellular matrix (ECM) of those tissues to be regenerated. Amongst the various scaffolding techniques, electrospinning is an outstanding one which is capable of producing non-woven fibrous structures with dimensional constituents similar to those of ECM fibres. In recent years, electrospinning has gained widespread interest as a potential tissue-engineering scaffolding technique and has been discussed in detail in many studies. So why this review? Apart from their clear advantages and extensive use, electrospun scaffolds encounter some practical limitations, such as scarce cell infiltration and inadequate mechanical strength for load-bearing applications. A number of solutions have been offered by different research groups to overcome the above-mentioned limitations. In this review, we provide an overview of the limitations of electrospinning as a tissue-engineered scaffolding technique, with emphasis on possible resolutions of those issues. Copyright © 2015 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                16 August 2017
                August 2017
                : 17
                : 8
                : 1887
                Affiliations
                [1 ]Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France; elena.sapountzi@ 123456gmail.com (E.S.); mohamed_braiek@ 123456yahoo.fr (M.B.); nicole.jaffrezic@ 123456isa-lyon.fr (N.J.-R.)
                [2 ]Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Avenue de l’Environnement, University of Monastir, Monastir 5019, Tunisia
                [3 ]Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut des Nanotechnologies de Lyon, UMR5270, Bâtiment Léon Brillouin, 6, rue Ada Byron, F-69622 Villeurbanne CEDEX, France; jean-francois.chateaux@ 123456univ-lyon1.fr
                Author notes
                [* ]Correspondence: florence.lagarde@ 123456isa-lyon.fr ; Tel.: +33-437-423-556
                Author information
                https://orcid.org/0000-0003-1354-9273
                Article
                sensors-17-01887
                10.3390/s17081887
                5579928
                28813013
                14e83401-2427-4e4f-aae5-0afac4e70019
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 July 2017
                : 13 August 2017
                Categories
                Review

                Biomedical engineering
                electrospinning,biosensing devices,bioreceptor immobilization,carbon nanofibers,metal oxide nanofibers,polymer nanofibers,metal nanoparticles,carbon nanotubes

                Comments

                Comment on this article