14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D bioprinting technology, a subset of 3D printing technology, is currently witnessing widespread utilization in tissue repair and regeneration endeavors. In particular, light-based 3D bioprinting technology has garnered significant interest and favor. Central to its successful implementation lies the judicious selection of photosensitive polymers. Moreover, by fine-tuning parameters such as light irradiation time, choice of photoinitiators and crosslinkers, and their concentrations, the properties of the scaffolds can be tailored to suit the specific requirements of the targeted tissue repair sites. In this comprehensive review, we provide an overview of commonly utilized bio-inks suitable for light-based 3D bioprinting, delving into the distinctive characteristics of each material. Furthermore, we delineate strategies for bio-ink selection tailored to diverse repair locations, alongside methods for optimizing printing parameters. Ultimately, we present a coherent synthesis aimed at enhancing the practical application of light-based 3D bioprinting technology in tissue engineering, while also addressing current challenges and future prospects.

          Highlights

          • The choice of Photosensitive polymers is one of the key elements that determine the successful implementation of scaffold. Furthermore, Factors such as light duration and intensity, type and concentration of photoinitiator and crosslinker can change the performance of the scaffold. This review highlights the properties of different polymers, describes strategies for customizing the scaffolds and enumerates the approaches used by researchers to modification.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: not found

          Alginate: properties and biomedical applications.

          Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            3D bioprinting for engineering complex tissues.

            Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic and therapeutic aspects of angiogenesis.

              Blood vessels form extensive networks that nurture all tissues in the body. Abnormal vessel growth and function are hallmarks of cancer and ischemic and inflammatory diseases, and they contribute to disease progression. Therapeutic approaches to block vascular supply have reached the clinic, but limited efficacy and resistance pose unresolved challenges. Recent insights establish how endothelial cells communicate with each other and with their environment to form a branched vascular network. The emerging principles of vascular growth provide exciting new perspectives, the translation of which might overcome the current limitations of pro- and antiangiogenic medicine. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mater Today Bio
                Mater Today Bio
                Materials Today Bio
                Elsevier
                2590-0064
                26 June 2024
                August 2024
                26 June 2024
                : 27
                : 101135
                Affiliations
                [a ]Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
                [b ]Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
                Author notes
                [* ]Corresponding author. jamesqfu@ 123456aliyun.com
                [** ]Corresponding author. sdzbbswangying@ 123456alumni.sjtu.edu.cn
                [1]

                These authors contributed equally to this work.

                Article
                S2590-0064(24)00194-7 101135
                10.1016/j.mtbio.2024.101135
                11262185
                39040222
                14d286ac-3549-405c-90b9-477a111b3151
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 February 2024
                : 10 June 2024
                : 21 June 2024
                Categories
                Review Article

                light-based 3d bioprinting 1,bio-ink 2,tissue engineering 3,photo-crosslinked polymers 4,hydrogel 5

                Comments

                Comment on this article