There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Abstract
Diurnal and seasonal rhythmicity, entrained by environmental and nutritional cues,
is a vital part of all life on Earth operating at every level of organization; from
individual cells, to multicellular organisms, whole ecosystems and societies. Redox
processes are intrinsic to physiological function and circadian regulation, but how
they are integrated with other regulatory processes at the whole-body level is poorly
understood. Circadian misalignment triggered by a major stressor (e.g. viral infection
with SARS-CoV-2) or recurring stressors of lesser magnitude such as shift work elicit
a complex stress response that leads to desynchronization of metabolic processes.
This in turn challenges the system's ability to achieve redox balance due to alterations
in metabolic fluxes (redox rewiring). We infer that the emerging ‘alternative redox
states' do not always revert readily to their evolved natural states; ‘Long COVID’
and other complex disorders of unknown aetiology are the clinical manifestations of
such rearrangements. To better support and successfully manage bodily resilience to
major stress and other redox challenges needs a clear perspective on the pattern of
the hysteretic response for the interaction between the redox system and the circadian
clock. Characterization of this system requires repeated (ideally continuous) recording
of relevant clinical measures of the stress responses and whole-body redox state (temporal
redox phenotyping). The human/animal body is a complex ‘system of systems’ with multi-level
buffering capabilities, and it requires consideration of the wider dynamic context
to identify a limited number of stress-markers suitable for routine clinical decision
making. Systematically mapping the patterns and dynamics of redox biomarkers along
the stressor/disease trajectory will provide an operational model of whole-body redox
regulation/balance that can serve as basis for the identification of effective interventions
which promote health by enhancing resilience.
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process. Long COVID is an often debilitating illness of severe symptoms that can develop during or following COVID-19. In this Review, Davis, McCorkell, Vogel and Topol explore our knowledge of long COVID and highlight key findings, including potential mechanisms, the overlap with other conditions and potential treatments. They also discuss challenges and recommendations for long COVID research and care.
Introduction The concept of oxidative stress has been introduced for research in redox biology and medicine in 1985, now 30 years ago, in an introductory chapter 1 in a book entitled ‘Oxidative Stress’ [2]. A concurrent comprehensive review entitled ‘Biochemistry of Oxidative Stress’ [3] presented the knowledge on pro-oxidants and antioxidants and their endogenous and exogenous sources and metabolic sinks. Since then, Redox Biology as a research area has found fulminant development in a wide range of disciplines, starting from chemistry and radiation biology through biochemistry and cell physiology all the way into general biology and medicine. A noteworthy insight, early on, was the perception that oxidation-reduction (redox) reactions in living cells are utilized in fundamental processes of redox regulation, collectively termed ‘redox signaling’ and ‘redox control’. A book ‘Antioxidant and Redox Regulation of Genes’ highlighted that development at an early stage [4]. Since then, an overwhelming and fascinating area of research has flourished, under the name of Redox Biology [5,6]. The concept of oxidative stress was updated to include the role of redox signaling [7], and there were efforts of redefining oxidative stress [8,9]. These developments were mirrored by the appearance of monographs, book series and the establishment of new research journals. Many volumes were published in Methods in Enzymology. An impressive number of new journals sprang up, Free Radical Research (initially Free Radical Research Communications), Free Radicals in Biology and Medicine, Redox Reports, Antioxidant Redox Signaling, and most recently Redox Biology. Useful as the term ‘oxidative stress’ may be in research, there has been an inflationary development in research circles and more so in the medical field and, even more than that, in public usage outside scientific endeavors (I would call it ‘over-stressing’ the term). This led to a dilution of the meaning, to overuse and even misuse. Cautionary words were published [10] and even explicit criticism was voiced [11,12]. “Over time, the mechanistic basis of the concept was largely forgotten and instead of the oxidative stress hypothesis becoming more precise in terms of molecular targets and mechanism, it became diffuse and nonspecific” [12]. In fact, an ‘oxidative stress hypothesis’ has not been formulated up to now. If anything, there were implicit deductions: for example, that because of the redox balance concept any single compound, e.g. a small-molecule redox-active vitamin, could alter the totality of the system. Such a view overlooks counterregulation and redundancies in the redox network. There is specificity inherent in the strategies of antioxidant defense [13]. Obviously, a general term describing a global condition cannot be meant to depict specific spatiotemporal chemical relationships in detail and in specific cells or organ conditions. Rather, it entails these, and directed effort is warranted to unravel the exact chemical and physical conditions and their significance in each case. Given the enormous variety and range of pro-oxidant and antioxidant enzymes and compounds, attempts were made to classify subforms of oxidative stress [7] and to conceptually introduce intensity scales ranging from physiological oxidative stress to excessive and toxic oxidative burden [14], as indicated in Table 1. There is ample evidence for the role of oxidation products of DNA, RNA, carbohydrates, proteins and lipids. What are the merits and pitfalls of ‘oxidative stress’ today? A comprehensive treatment of this question is to be deferred to an in-depth treatment (in preparation). However, for the purpose of the present Commentary it may suffice to collect a few thoughts: from its very nature, it is a challenge to combine the basic chemical notion of oxidation-reduction, including electron transfer, free radicals, oxygen metabolites (such as the superoxide anion radical, hydrogen peroxide, hydroxyl radical, electronically excited states such as singlet molecular oxygen, as well as the nitric oxide radical and peroxynitrite) with a biological concept, that of stress, first introduced by Selye in his research of adaptive responses [15,16]. The two words ‘oxidative’ and ‘stress’ elicit a notion which, in a nutshell, focuses on an important sector of fundamental processes in biology. This is a merit. Pitfalls are close-by: in research, simply to talk of ‘exposing cells or organisms to oxidative stress’ should clearly be discouraged. Instead, the exact molecular condition employed to change the redox balance of a given system is what is important; for example, in an experimental study cells were exposed to hydrogen peroxide, not to oxidative stress. Such considerations are even more appropriate in applications in the medical world. Quite often, redox components which are thought to be centrally important in disease processes are flatly denoted as oxidative stress; this can still be found in numerous schemes in the current biomedical literature. The underlying biochemically rigorous foundation may often be missing. Constructive criticism in this sense has been voiced repeatedly [11,12,17]. A related pitfall in this sense is the use of the term ROS, which stands for reactive oxygen species (the individual chemical reactants which were named in the preceding paragraph); whenever the specific chemical entity of the oxidant is known, that oxidant should be mentioned and discussed, not the generic ‘ROS’. This ‘one-size-fits-all’ mentality pervades also into the analytics: measuring so-called ‘total antioxidant capacity (TAC)’ in a blood plasma sample will not give useful information on the state of the organism, and should be discouraged [18]. Rather, individual antioxidant enzyme activities and patterns of antioxidant molecules need to be assessed. In view of the knowledge that the major burden of antioxidant defense is shouldered by antioxidant enzymes [13], it seems puzzling—in hindsight—that large human clinical studies based on one or two low-molecular-weight antioxidant compounds were undertaken. 3 What is attractive about ‘oxidative stress’? 3.1 Molecular redox switches What seems to be attractive about the term is the implicit notion of adaptation, coming from the general association of stress with stress response. This goes back to Selye's concept of stress as the ‘general adaptation syndrome’ [19]. The enormously productive field of molecular switches was opened by the discovery of phosphorylation/dephosphorylation, serving a mechanism in molecular signaling [20]. The role of redox switches came into focus more recently, foremost the dynamic role of cysteines in proteins, opening the field of the redox proteome, currently flourishing because of advances in mass spectrometric and imaging methodology [21–24]. A bridge between phosphorylation/dephosphorylation and protein cysteine reduction/oxidation is given by the redox sensitivity of critical cysteinyl residues in protein phosphatases, opening the molecular pathway for signaling cascades as fundamental processes throughout biology. What was particularly exciting to many researchers was the discovery of master switch systems [25], prominent examples being OxyR in bacteria [26] and NFkB [27] and Nrf2/Keap1 [28] in higher organisms. That batteries of enzyme activities are mustered by activation of gene transcription through a ‘simple’ redox signal is still an exciting strategy. Much of current effort in redox biology is addressed towards these response systems. Obviously, medical and pharmacological intervention attempts are a consequence. Outlook Current interest into the linkage of oxidative stress to inflammation and inflammatory responses is adding a new perspective. For example, inflammatory macrophages release glutathionylated peroxiredoxin-2, which then acts as a ‘danger signal’ to trigger the production of tumor necrosis factor-alpha [29]. The orchestrated responses to danger signals related to damage-associated molecular patterns (DAMPs) include relations to oxidative stress [30]. Under oxidative stress conditions, a protein targeting factor, Get3 in yeast (mammalian TRC40) functions as an ATP-independent chaperone [31]. More detailed molecular understanding will also deepen the translational impact into biology and medicine; as mentioned above, these aspects are beyond this Commentary and will be treated elsewhere. However, it might be mentioned, for example, that viral and bacterial infections are often associated with deficiencies in micronutrients, including the essential trace element, selenium, the redox-active moiety in selenoproteins. Selenium status may affect the function of cells in both adaptive and innate immunity [32]. Major diseases, now even diabetes Type 2, are being considered as ‘redox disease’ [33]. Molecular insight will enhance the thrust of the concept of oxidative stress, which is intimately linked to cellular energy balance. Thus, the subcellular compartmentation of redox processes and redox components is being studied at a new level, in mammalian cells [34] as well as in phototrophic organisms [35]. New insight from spatiotemporal organization of hydrogen peroxide metabolism [36] complements the longstanding interest in hydroperoxide metabolism in mammalian organs and its relationship to bioenergetics [37]. The following quote attributed to Hans Selye [38] might well apply to the concept of oxidative stress: “If only stress could be seen, isolated and measured, I am sure we could enormously lengthen the average human life span”.
In this paper, inspired by the plenary panel at the 2013 meeting of the International Society for Traumatic Stress Studies, Dr. Steven Southwick (chair) and multidisciplinary panelists Drs. George Bonanno, Ann Masten, Catherine Panter-Brick, and Rachel Yehuda tackle some of the most pressing current questions in the field of resilience research including: (1) how do we define resilience, (2) what are the most important determinants of resilience, (3) how are new technologies informing the science of resilience, and (4) what are the most effective ways to enhance resilience? These multidisciplinary experts provide insight into these difficult questions, and although each of the panelists had a slightly different definition of resilience, most of the proposed definitions included a concept of healthy, adaptive, or integrated positive functioning over the passage of time in the aftermath of adversity. The panelists agreed that resilience is a complex construct and it may be defined differently in the context of individuals, families, organizations, societies, and cultures. With regard to the determinants of resilience, there was a consensus that the empirical study of this construct needs to be approached from a multiple level of analysis perspective that includes genetic, epigenetic, developmental, demographic, cultural, economic, and social variables. The empirical study of determinates of resilience will inform efforts made at fostering resilience, with the recognition that resilience may be enhanced on numerous levels (e.g., individual, family, community, culture).
Publication date
(Electronic, pub):
September 6, 2023
Publication date
(Electronic, collection):
September
2023
Publication date PMC-release: September 6, 2023
Volume: 13
Issue: 9
Electronic Location Identifier: 230151
Affiliations
[1]
Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research
Centre, University Hospital Southampton NHS Foundation Trust, , Southampton SO16 6YD, UK
[2]
Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, , Southampton, SO16 6YD, UK
[3]
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, , F-91198, Gif-sur-Yvette Cedex, France
[4]
Human Nutrition, University of Southampton and University Hospital Southampton, , Tremona Road, Southampton, SO16 6YD, UK
Published by the Royal Society under the terms of the Creative Commons Attribution
License
http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.