12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation

      1 , 1 , 1 , 1
      Journal of Cell Science
      The Company of Biologists

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of angiogenesis.

          W Risau (1997)
          After the developing embryo has formed a primary vascular plexus by a process termed vasculogenesis, further blood vessels are generated by both sprouting and non-sprouting angiogenesis, which are progressively pruned and remodelled into a functional adult circulatory system. Recent results, particularly from the study of mice lacking some of the signalling systems involved, have greatly improved our understanding of the molecular basis underlying these events, and may suggest new approaches for treating conditions such as cancer that depend on angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A rapid in vitro assay for quantitating the invasive potential of tumor cells.

            We have reconstituted a matrix of basement membrane onto a filter in a Boyden chamber and assessed the ability of various malignant and nonmalignant cells to penetrate through the coated filter. Cells from all the malignant cell lines tested were able to cross the matrix in 5-6 h, whereas human fibroblasts as well as mouse 3T3 and 10T1/2 cell lines, which are not tumorigenic, were not invasive. In addition, normal primary prostate epithelial cells and benign prostatic hyperplasia cells were not invasive when tested in this assay, whereas malignant prostate carcinoma cells were highly invasive. Parallel experiments with these prostatic cells using the intrasplenic assay for metastasis detection in the nude mouse confirmed the benign behavior of the former cells and the metastatic phenotype of the latter ones. These results suggest that this in vitro test allows the rapid and quantitative assessment of invasiveness and a means to screen for drugs which alter the invasive phenotype of tumor cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.

              A method has been devised for the electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. The method results in quantitative transfer of ribosomal proteins from gels containing urea. For sodium dodecyl sulfate gels, the original band pattern was obtained with no loss of resolution, but the transfer was not quantitative. The method allows detection of proteins by autoradiography and is simpler than conventional procedures. The immobilized proteins were detectable by immunological procedures. All additional binding capacity on the nitrocellulose was blocked with excess protein; then a specific antibody was bound and, finally, a second antibody directed against the first antibody. The second antibody was either radioactively labeled or conjugated to fluorescein or to peroxidase. The specific protein was then detected by either autoradiography, under UV light, or by the peroxidase reaction product, respectively. In the latter case, as little as 100 pg of protein was clearly detectable. It is anticipated that the procedure will be applicable to analysis of a wide variety of proteins with specific reactions or ligands.
                Bookmark

                Author and article information

                Journal
                Journal of Cell Science
                The Company of Biologists
                1477-9137
                0021-9533
                January 01 2000
                January 01 2000
                : 113
                : 1
                : 59-69
                Affiliations
                [1 ]Istituto Nazionale per la Ricerca sul Cancro, Centro di Biotecnologie Avanzate, Genova, Italy. descalzi@ermes.cba.unige.it.
                Article
                10.1242/jcs.113.1.59
                14a949c3-bcb4-4628-a183-0eb91aa94886
                © 2000
                History

                Comments

                Comment on this article