1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Causal effects from inflammatory bowel disease on liver function and disease: a two-sample Mendelian randomization study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Accumulating evidence has shown that patients with inflammatory bowel disease (IBD) have liver function abnormalities and are susceptible to liver diseases. However, the existence of a causal relationship between IBD and liver function or disease remains unclear.

          Methods

          A two-sample Mendelian randomization (MR) analysis was performed using genetic associations from publicly available genome-wide association studies (GWAS). These associations encompass ulcerative colitis (UC), Crohn’s disease (CD), liver function traits, and liver disease phenotypes. The liver function traits comprised hepatic biochemistries, percent liver fat, and liver iron content from the UK Biobank. Furthermore, the liver disease phenotypes included cholelithiasis, non-alcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), and primary biliary cholangitis (PBC) in cohorts of European ancestry. The primary estimation used the inverse-variance weighted method, with GWAS of C-reactive protein (CRP) in the UK Biobank serving as a positive control outcome.

          Results

          Genetically predicted UC is causally associated with decreased levels of albumin (ALB) and liver iron content, while genetically predicted CD is causally associated with increased levels of alkaline phosphatase (ALP). Moreover, genetically predicted UC or CD increases the risk of PSC, and CD increases the risk of PBC. Neither UC nor CD causally increases the risk of cholelithiasis and NAFLD.

          Conclusion

          UC affects the levels of ALB and liver iron content, while CD affects the levels of ALP. Both UC and CD increase the risk of PSC, and CD increases the risk of PBC.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

          ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interpreting findings from Mendelian randomization using the MR-Egger method

            Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption—the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases. Electronic supplementary material The online version of this article (doi:10.1007/s10654-017-0255-x) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians

              Mendelian randomisation uses genetic variation as a natural experiment to investigate the causal relations between potentially modifiable risk factors and health outcomes in observational data. As with all epidemiological approaches, findings from Mendelian randomisation studies depend on specific assumptions. We provide explanations of the information typically reported in Mendelian randomisation studies that can be used to assess the plausibility of these assumptions and guidance on how to interpret findings from Mendelian randomisation studies in the context of other sources of evidence
                Bookmark

                Author and article information

                Contributors
                Role: Role: Role: Role:
                Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1689743/overviewRole: Role: Role:
                Role: Role: Role:
                Role: Role: Role:
                URI : https://loop.frontiersin.org/people/998069/overviewRole: Role: Role: Role: Role: Role:
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                17 January 2024
                2023
                : 10
                : 1320842
                Affiliations
                [1] 1Department of Gastroenterology, Third Xiangya Hospital, Central South University , Changsha, China
                [2] 2Division of Plastic Surgery, Zhongshan Hospital Xiamen University , Xiamen, China
                [3] 3Department of Molecular Medicine, Mayo Clinic , Rochester, MN, United States
                [4] 4Department of Gastroenterology, Xiangya Hospital, Central South University , Changsha, China
                [5] 5Department of Orthopaedics, Xiangya Hospital, Central South University , Changsha, China
                Author notes

                Edited by: Francesco Panzuto, Sapienza University of Rome, Italy

                Reviewed by: Samuel J. Martínez-Domínguez, Lozano Blesa University Clinical Hospital, Spain; James H. Lewis, MedStar Georgetown University Hospital, United States

                *Correspondence: Chao Deng, orthodengchao@ 123456foxmail.com

                These authors have contributed equally to this work

                Article
                10.3389/fmed.2023.1320842
                10827874
                38298515
                14861b93-7d74-48f3-a005-5a1f56ecda43
                Copyright © 2024 Shu, Yang, Liu, Xu, Deng and Wu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 October 2023
                : 28 December 2023
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 36, Pages: 8, Words: 5824
                Funding
                The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.
                Categories
                Medicine
                Original Research
                Custom metadata
                Gastroenterology

                ulcerative colitis,crohn’s disease,non-alcoholic fatty liver disease,primary sclerosing cholangitis,primary biliary cholangitis

                Comments

                Comment on this article