43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.

          Related collections

          Most cited references221

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy, Metabolism, and Cancer.

          Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy."
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioavailability of resveratrol.

            This paper reviews our current understanding of the absorption, bioavailability, and metabolism of resveratrol, with an emphasis on humans. The oral absorption of resveratrol in humans is about 75% and is thought to occur mainly by transepithelial diffusion. Extensive metabolism in the intestine and liver results in an oral bioavailability considerably less than 1%. Dose escalation and repeated dose administration of resveratrol does not appear to alter this significantly. Metabolic studies, both in plasma and in urine, have revealed major metabolites to be glucuronides and sulfates of resveratrol. However, reduced dihydroresveratrol conjugates, in addition to highly polar unknown products, may account for as much as 50% of an oral resveratrol dose. Although major sites of metabolism include the intestine and liver (as expected), colonic bacterial metabolism may be more important than previously thought. Deconjugation enzymes such as β-glucuronidase and sulfatase, as well as specific tissue accumulation of resveratrol, may enhance resveratrol efficacy at target sites. Resveratrol analogs, such as methylated derivatives with improved bioavailability, may be important in future research. © 2011 New York Academy of Sciences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis

              Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2019
                14 August 2019
                : 2019
                : 8562408
                Affiliations
                1Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
                2Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Mexico
                3Tecnológico de Monterrey Institute, School of Medicine and Health Sciences, Campus Guadalajara, Mexico
                4Department of Physiology, University Center of Tonalá, University of Guadalajara, Mexico
                Author notes

                Academic Editor: Konstantinos Papatheodorou

                Author information
                https://orcid.org/0000-0001-7868-667X
                https://orcid.org/0000-0002-5180-3810
                https://orcid.org/0000-0001-9093-9406
                Article
                10.1155/2019/8562408
                6710812
                31511825
                146189e5-5ca5-4b25-b52e-5969076cebb3
                Copyright © 2019 Olvera-Montaño Cecilia et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 February 2019
                : 17 June 2019
                : 15 July 2019
                Categories
                Review Article

                Comments

                Comment on this article