2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Artemisinin ameliorates intestinal inflammation by skewing macrophages to the M2 phenotype and inhibiting epithelial–mesenchymal transition

      , ,
      International Immunopharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The basics of epithelial-mesenchymal transition.

          The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm.

            Plasticity is a hallmark of cells of the myelomonocytic lineage. In response to innate recognition or signals from lymphocyte subsets, mononuclear phagocytes undergo adaptive responses. Shaping of monocyte-macrophage function is an essential component of resistance to pathogens, tissue damage and repair. The orchestration of myelomonocytic cell function is a key element that links inflammation and cancer and provides a paradigm for macrophage plasticity and function. A better understanding of the molecular basis of myelomonocytic cell plasticity will open new vistas in immunopathology and therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis.

              The generic mitogen-activated protein kinases (MAPK) signaling pathway is shared by four distinct cascades, including the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK and ERK5. Mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathway is reported to be associated with the cell proliferation, differentiation, migration, senescence and apoptosis. The literatures were searched extensively and this review was performed to review the role of MAPK/ERK signaling pathway in cell proliferation, differentiation, migration, senescence and apoptosis.
                Bookmark

                Author and article information

                Journal
                International Immunopharmacology
                International Immunopharmacology
                Elsevier BV
                15675769
                February 2021
                February 2021
                : 91
                : 107284
                Article
                10.1016/j.intimp.2020.107284
                33359851
                143fc1f9-31e1-4846-947a-0afc45a06f09
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article