13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates.

          Other labs have previously reported the ability of adeno-associated virus serotype 9 (AAV9) to cross the blood-brain barrier (BBB). In this report, we carefully characterized variables that might affect AAV9's efficiency for central nervous system (CNS) transduction in adult mice, including dose, vehicle composition, mannitol coadministration, and use of single-stranded versus self-complementary AAV. We report that AAV9 is able to transduce approximately twice as many neurons as astrocytes across the entire extent of the adult rodent CNS at doses of 1.25 × 10¹², 1 × 10¹³, and 8 × 10¹³ vg/kg. Vehicle composition or mannitol coadministration had only modest effects on CNS transduction, suggesting AAV9 crosses the BBB by an active transport mechanism. Self-complementary vectors were greater than tenfold more efficient than single-stranded vectors. When this approach was applied to juvenile nonhuman primates (NHPs) at the middle dose (9-9.5 × 10¹² vg/kg) tested in mice, a reduction in peripheral organ and brain transduction was observed compared to mice, along with a clear shift toward mostly glial transduction. Moreover, the presence of low levels of pre-existing neutralizing antibodies (NAbs) mostly occluded CNS and peripheral transduction using this delivery approach. Our results indicate that high peripheral tropism, limited neuronal transduction in NHPs, and pre-existing NAbs represent significant barriers to human translation of intravascular AAV9 delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain.

            Recombinant adeno-associated viral (AAV) vectors can transduce cells of the CNS, resulting in long-term expression. AAV vector transduction varies depending on the serotype used and the region of the brain injected. AAV serotypes 7, 8, 9, and Rh10 have recently become available, but the transduction capabilities of these serotypes within the CNS have not been determined. We show that AAV 7, 8, 9, and Rh10 vectors expressing cDNA for a lysosomal enzyme transduce neurons, but not astrocytes or oligodendrocytes, in the cortex, striatum, hippocampus, and thalamus. Although all of the vectors contained the same genome, there were markedly different transduction patterns that could be due only to the differences in capsid proteins. The AAV 9 vector was found to undergo vector genome transport to distal neuronal cell bodies via known axonal pathways. This facilitated the distribution of enzyme, resulting in correction of lysosomal storage lesions in regions of a diseased brain that would not be corrected if the genome were not transported.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Silver staining of proteins in polyacrylamide gels.

                Bookmark

                Author and article information

                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                Nature Publishing Group
                2329-0501
                02 March 2016
                2016
                : 3
                : 15057
                Affiliations
                [1 ]Genetics and Genome Biology, SickKids , Toronto, Ontario, Canada
                [2 ]Department of Ophthalmology and Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA
                [3 ]Medical Genetics/Department of Pediatrics, Queen’s University , Kingston, Ontario, Canada
                [4 ]Department of Chemistry and Biology, Ryerson University , Toronto, Ontario, Canada
                [5 ]Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada
                [6 ]Department of Laboratory Medicine and Pathology, University of Toronto , Toronto, Ontario, Canada
                Author notes
                Article
                mtm201557
                10.1038/mtm.2015.57
                4774620
                26966698
                143da650-ab86-4e65-832f-5e5d77fb8461
                Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 16 December 2015
                : 17 December 2015
                Categories
                Article

                Comments

                Comment on this article