15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases

      , ,
      Ageing Research Reviews
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The FAIR Guiding Principles for scientific data management and stewardship

          There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Biological Insights From 108 Schizophrenia-Associated Genetic Loci

            Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Neurofilaments as biomarkers in neurological disorders

              Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ageing Research Reviews
                Ageing Research Reviews
                Elsevier BV
                15681637
                August 2023
                August 2023
                : 89
                : 101991
                Article
                10.1016/j.arr.2023.101991
                37348818
                143d3c79-5077-441a-8a04-3f4c0575fc04
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article