3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights Into Forensic Features and Genetic Structures of Guangdong Maoming Han Based on 27 Y-STRs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR ® Yfiler ® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neighbor-joining method: a new method for reconstructing phylogenetic trees.

            N Saitou, M Nei (1987)
            A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Forensic use of Y-chromosome DNA: a general overview

              The male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes composed of Y-chromosomal short tandem repeat polymorphisms (Y-STRs) are used to characterise paternal lineages of unknown male trace donors, especially suitable when males and females have contributed to the same trace, such as in sexual assault cases. Y-STR haplotyping applied in crime scene investigation can (i) exclude male suspects from involvement in crime, (ii) identify the paternal lineage of male perpetrators, (iii) highlight multiple male contributors to a trace, and (iv) provide investigative leads for finding unknown male perpetrators. Y-STR haplotype analysis is employed in paternity disputes of male offspring and other types of paternal kinship testing, including historical cases, as well as in special cases of missing person and disaster victim identification involving men. Y-chromosome polymorphisms are applied for inferring the paternal bio-geographic ancestry of unknown trace donors or missing persons, in cases where autosomal DNA profiling is uninformative. In this overview, all different forensic applications of Y-chromosome DNA are described. To illustrate the necessity of forensic Y-chromosome analysis, the investigation of a prominent murder case is described, which initiated two changes in national forensic DNA legislation both covering Y-chromosome use, and was finally solved via an innovative Y-STR dragnet involving thousands of volunteers after 14 years. Finally, expectations for the future of forensic Y-chromosome DNA analysis are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                18 June 2021
                2021
                : 12
                : 690504
                Affiliations
                [1] 1School of Forensic Medicine, Southern Medical University , Guangzhou, China
                [2] 2Institute of Archaeological Science, Fudan University , Shanghai, China
                [3] 3School of Basic Medicine and Life Science, Hainan Medical University , Haikou, China
                [4] 4School of Basic Medicine, Gannan Medical University , Ganzhou, China
                Author notes

                Edited by: Chuan-Chao Wang, Xiamen University, China

                Reviewed by: Cemal Gurkan, Turkish Cypriot DNA Laboratory, Cyprus; Pankaj Shrivastava, State Forensic Science Laboratory, Sagar, India

                These authors have contributed equally to this work

                This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2021.690504
                8253533
                34220963
                142ddd56-3873-4a77-bd9e-077e5426860b
                Copyright © 2021 Fan, Xie, Li, Wang, Wen and Qiu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 April 2021
                : 14 May 2021
                Page count
                Figures: 4, Tables: 1, Equations: 1, References: 75, Pages: 10, Words: 0
                Categories
                Genetics
                Original Research

                Genetics
                maoming han,gaoliang culture,y-str,forensic features,genetic structures
                Genetics
                maoming han, gaoliang culture, y-str, forensic features, genetic structures

                Comments

                Comment on this article